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Abstract 

 Knowledge graphs and images offer contrasting yet complementary sources of 

information. Images offer visuospatial data lacking in the structure of knowledge graphs. By 

integrating these two data types, their complementary information can improve the ability of 

various prediction tasks. In this report, I investigate creating an aligned image-knowledge graph 

dataset and the implementation of a joint-embedding model using the KADE method.  I use the 

Inception-resnet v2 architecture to create an image embedding. I also use TransE for experiments 

involving knowledge graph embeddings.  

Introduction 

As the volume of collected data continues to grow, tools such as large knowledge graphs 

(KGs) have been created to provide knowledge about relationships between real-world concepts. 

The underlying structure of a KG consists of entities which are connected by various 

relationships; for example, a commonly given example would be the link between Douglas 

Adams and his book Hitchhiker’s Guide to the Galaxy via the relationship “Author of.” These 

relationships are relevant for applications such as querying. However, KGs lack other types of 

complementary information, such as visual data. Visual information can provide useful 

properties to complement the entity-relationship triples present in a KG. However, linking visual 

information to knowledge graphs without human input is difficult due to the wide variety of 

concepts covered in modern knowledge graphs and the dissimilarity between data types.  

Embeddings are a useful tool for representing high-dimensional and potentially sparse data in a 

condensed manner. Embeddings are low-dimensional translations of higher dimensional data 

which seek to retain the semantic property of the data in a dense low-dimensional vector. 

Commonly used examples include Word2Vec [1] and TransE [2]. Embeddings allow data which 

might normally have a sparse representation like one-hot encoding, such as an entity in a 

knowledge graph or a word in a document, to be expressed in a compact yet semantically useful 

format.  

Image data and knowledge graphs have previously been tied together in papers such as [3] 

and [4], who create multi-modal spaces by concatenating unimodal embeddings, process these 

using various methods, and then measuring semantic similarity between embeddings using 

semantic relatedness tasks such as WordSim353 and MEN. In addition, works such as [5] 

attempt to combine images with descriptive sentences using embeddings.  

In order to obtain a dataset for this project, I investigate two commonly used KGs: DBPedia 

and Wikidata. I initially elected not to focus on Freebase due to its retirement. In addition, I 

investigated image databases which could potentially be linked to a knowledge graph. I was 

unable to find any dedicated, human-verified joint image-knowledge graph datasets. Imagenet 

[6] stood out as a likely possibility since it was based on Wordnet [7], which is a large lexical 

database of “synsets” that group together equivalent meaning words. Imagenet is a very popular 

and important benchmark dataset. The mapping of images to synsets as well as the popularity of 

the dataset made it desirable to use for this task. To this effect, I attempted to create a dataset 

connecting Imagenet and Wikidata or DBPedia.  



This report investigates the connection between knowledge graphs and images. Particularly, 

it focuses on the joint creation of embeddings of aligned images and knowledge graphs. This 

allows the preservation of the very different semantic information contained in images, which 

contain visuospatial information, and that of knowledge graphs, which structure information 

graphically. The project investigates the application of the KADE method [13] to this problem of 

tying the very differing data structures of KGs and images together.   

Dataset  

I initially investigated DBPedia, since many of its entities are linked to Wordnet 2.0. I used 

official Wordnet mappings to convert this to Wordnet 3.0, which Imagenet is based on. 

According to [8], the quality of mappings is reasonably well-preserved. Finally, these are 

mapped to Imagenet. I also investigated linking Wikidata to Imagenet by means of the YAGO 

ontology [9]. This is a manually verified ontology which provides mappings including 

connecting Wikidata entities to Wordnet 3.0 synsets. In addition, Imagegraph [10], a knowledge 

graph which consists of search engine scraped images mapped to FB15K was downloaded for 

the purpose of developing and testing the model. 

a. Imagenet  

Imagenet [6] is an extremely popular image classification database based on Wordnet, which 

relates the meaning of words. Imagenet provides tens of thousands of image files in various 

categories. In particular, the Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 

along with the debut of Alexnet [14] has resulted in a widely used benchmark dataset, 

Imagenet1k, containing 1000 image categories. This dataset is used both as a benchmark for 

classification and to train new models on for transfer learning. In Imagenet, images are sorted 

into underlying Wordnet [7] synsets, which are groups of related words. An example of this 

might be “timber” and “lumber” are in the same category. The Wordnet basis allows the image 

database to be adapted to language-based datasets more easily. The underlying linguistic 

backbone along with the large image database and historical popularity of the dataset make it a 

strong candidate for being mapped to knowledge graphs. Unfortunately, the authors of Imagenet 

failed to respond to attempted communication for the purpose of downloading the original 

dataset. Thus, images were downloaded with wget directly from their URLs, many of which 

were outdated and broken links. From the URLs that were reachable, roughly 75.2% of the 

images that were downloaded were actual image files. 

b. DBPedia  

DBPedia is a knowledge graph based on many Wikipedia projects, primarily through 

extraction of Wikipedia infoboxes. It is frequently used as a dataset for knowledge graph 

applications, such as embeddings. I initially worked to connect DBPedia to Imagenet due to its 

connections to Wordnet 2.0. I obtained a file containing the Wordnet 2.0 links in the 2017 

release of DBPedia. DBPedia maps to 124 synsets consisting of approximately 425,000 entities. 

URLs for the DBPedia entities and the Wordnet synsets were extracted from the linking file. I 

take the DBPedia entity name directly from its URL, and I access the Wordnet URL hosted by 

w3 in order to obtain the Wordnet ID (wnid). Next, the Wordnet 2.0 wnid is mapped to Wordnet 

2.1. using the sensemaps published online by Wordnet. Due to the noun-only structure of 

Imagenet, I only mapped nouns. The polysemous mappings consisted of several potential 

mappings to new synsets with an assigned confidence in the mapping. Among the synsets that 



had polysemous mappings, I randomly used one of the potential mappings which had above a 

10% confidence. This resulted in the majority of the synsets being mapped. 70% of the desired 

synsets mapped between version 2.0 and 2.1 were monosemous, and the rest were mapped when 

polysemous mapping was introduced. I followed the same procedure to map Wordnet from 2.1 to 

3.0, and I find that the same amount of synsets map monsemously. Selecting the highest 

confidence mapping among polysemous synsets provides the most semantic coverage. However, 

the final entity file only has 425,008 entities mapped to Wordnet before being mapped to 

Imagenet specific synsets, so I instead focus on Wikidata, which had a considerably larger 

amount of mapped entities.  

 

Figure 1 - Steps for mapping DBPedia and Imagenet 

c. Wikidata  

The technique applied to Wikidata can be applied to the mapping created above as well. 

Wikidata is a knowledge graph which is part of the Wikimedia foundation. In order to map this 

dataset to imagenet, I used the YAGO ontology [9]. In particular, this required several mappings 

from YAGO. First, I extracted the YAGO simple types containing Wordnet mappings. This 

resulted in roughly 3.1 million mappings. Next, I mapped these to YAGO’s Wikidata instances. 

This mapping contains simple YAGO types which map to both Wordnet and Wikidata. Next, I 

map the simple type to the Wordnet ID (wnid) rather than a synset name and restrict it to 

Imagenet synsets. I use two files from Imagenet’s website which provide a list of synsets. These 

files differ, but my tests show that they ultimately contain the same synsets and produce no 

difference in the final result. This yields a graph containing roughly 1.6 million entities. I use this 

file and replace the simple types with QIDs, creating a mapping from the Wikidata QID to the 

Imagenet synset.   
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Figure 2 Steps for mapping Wikidata and Imagenet 

Following the creation of this list of files, the 1.6 million entities mapped to synsets are 

downloaded. These entities are downloaded by directly querying the online SPARQL endpoint 

using Gastrodon. Gastrodon is a toolkit used for working with RDF graphs and SPARQL 

queries. I queried the Wikidata query endpoint using the SPARQL query seen in Figure 3 which 

is designed to find the links to other Wikidata entities. It ignores statements, which are not a 

useful feature for the graph, and other languages besides English. Finally, I store these triples 

with the specific Wikidata entity as a head in an individual file. Each is stored in its respective 

synset’s directory. Note that relationships where the entity is the tail are not queried; these will 

be stored if the head entity of that relationship is also linked to Imagenet.  

SELECT ?pred ?obj WHERE { 

  wd:Q42 ?pred ?obj . 

  FILTER(STRSTARTS(xsd:string(?obj), "http://www.wikidata.org/entity/")) 

  FILTER(!STRSTARTS(xsd:string(?obj), "http://www.wikidata.org/entity/statement") 

  SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }   

} 
 

Figure 3 SPARQL query for downloading a subgraph of Wikidata entities. This particular query returns all triples where Q42 is the 
head and another Wikidata entity is the tail. 

Next, I process the triples I have downloaded and extract a non-disjoint subgraph to 

provide a suitable environment for embedding models. I create a subgraph from these entities 

using the Gastrodon Python toolkit. Unless otherwise stated, code and libraries used in this work 

are implemented using Python 3.6. I first parsed the file structure to obtain all the entities. Next, I 

eliminated synsets lacking any pictures downloaded. Although there may be pictures in 
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Imagenet, the download was incomplete due to downloading via old URLs. I then loaded the 

entities into a complete knowledge graph, which contains 596,743 entities of which 290,394 are 

the subject of a triple (have a synset). Next, I trimmed this graph to only entities which exist in 

my mapping of QIDs to synsets. Finally, I use the following algorithm to create a non-disjoint 

subgraph of this data to create embeddings with. The property path syntax in SPARQL queries 

returns connected entities. Specifically, “+” is used to find other entities connected to an entity 

via one or more paths. However, it only finds connected entities along the same relationship, so 

to circumvent this I use an identical placeholder relationship “<>”. A copy of the trimmed graph 

is created and all the relationships in the triples are replaced with the identical placeholder. This 

allows the use of the “+” in the SPARQL query. This modified copy of the trimmed graph is 

uploaded to blazegraph. This is necessary because the following query using “+” is often 

implemented recursively and fails in various Python-based implementations such as the 

Gastrodon toolkit using RDFlib. The SPARQL query returns all interconnected entities. I select a 

random entity and run this SPARQL query on it, which returns a list of connected entities—my 

subgraph. Entities that are assigned a subgraph are marked. A new random, unassigned entity is 

selected and its subgraph is queried. The entities in the placeholder graph are iterated over until 

they are all assigned a subgraph. To select a subgraph the following heuristics are performed: 

first, the largest subgraph is selected. Second, from subgraphs of identical size, the subgraph with 

the most triples is selected. Finally, the selection is random.  

prefix wd: <http://www.wikidata.org/entity/> 

prefix wdt: <http://www.wikidata.org/prop/direct/> 

prefix : <> 

SELECT * WHERE { 

  wd:Q1131681 <>+ ?o 

} 
 

Figure 4 SPARQL query for identification of subgraphs 

Two list of of Imagenet synsets were used: an XML file of synsets from the fall 2011 

release consisting of 428 unique Wikidata-mapped synsets and another file of synsets provided 

by ImageNet on its download page which contains 280 unique synsets. Some of these synsets, 

however, contain no pictures upon downloading.  I compared the useful synsets and found that 

after several steps of mapping, they eventually became equivalent, so I used the former list for 

my mapping. 

The trimmed graph contains 141,255 triples. After creating the subgraphs, the largest 

subgraph contains 55,360 entities and 126,101 triples, which represents 63 synsets. This result is 

fairly sparse. This subgraph was used to create training-test splits. In addition, the subgraph was 

formatted so that OpenKE can be used to run TransE on the data.  

TransE obtains a best mean rank of 2576.132812 after r filtering given a random 70-30 

training test split. This mean rank result matches those of TransE when applied to other sparse 

knowledge graphs such as DB50. Several varying train-test splits were used, and TransE had 

similar results on various data splits. There are not enough relationships between the entities to 

provide the information to create embeddings that are as effective as those from dense graphs. It 



is likely that there are entities with many connections and others with very few. This results in a 

test-train split where an entity may only be present in one or the other since it only has one 

connection. This dataset provides a sparse graph mapped to Imagenet for testing embedding or 

other approaches which may require graph sparsity. 

d. FB15K and Imagegraph 

FB15K is a commonly used benchmark knowledge graph used for evaluating KG 

embedding methods. It is a subset of the Freebase knowledge graph, which is based on 

Wikipedia; however, Freebase is no longer supported due to the creation of Wikidata. However, 

the small benchmark dataset FB15K is still widely used for benchmarking embedding models. I 

initially focused my investigation of image-KG linking on DBPedia and Wikidata. In addition, I 

also focused on finding a dense graph for testing. I found a recent paper [10] with a dataset using 

the converse method: it uses the existing FB15K graph and scrapes images from search engines 

to match it. This resulted in roughly ~920,000 images of which ~600,000 were viable images 

spread among 14,854 entities, covering the large majority of FB15K. These images are not 

human verified and may be ambiguous, but it provides a dense, benchmark knowledge graph 

which can be used to test potential embedding models. In [10], Oñoro-Rubio et al. use the VGG 

image classification model to create embeddings which they train (starting with pretrained 

weights) using the TransE loss function by using the FB15K relationships to describe triples 

between the images. They attempt to answer various types of basic matching SPARQL queries 

using images.  

  

Model 

 The goal of the model is to create a joint embedding which links images and knowledge 

graph entities. The model uses the KADE method [13] to create these embeddings in an iterative 

process. The model seperates into two components: a knowledge graph embedding such as 

TransE and an image embedding model. The goal of the model is to iterate between the two 

embedding methods and use regularizers to create a joint embedding space. 

Image embeddings are typically extracted from existing image classification networks. 

Popular networks include the variety of Inception networks [11] and VGG [12]. The Inception-

Resnet v2 convolutional neural network image classification model using pretrained weights is 

used to create embeddings in this report. 

a. Inception-resnet v2   

This image classification model [11] is a fusion of the resnet architecture originating 

from Microsoft [15] with Google’s Inception architecture.  It has obtained state of the art results 

on the ILSVRC. The model uses residual blocks where some connections skip layers in order to 

avoid the vanishing gradient problem and create deeper networks. Resnet models also train in 

fewer epochs than previous inception models. By using this state of the art model, we can obtain 

embeddings which appropriately represent images. In addition, this architecture produces a 

1,536-dimensional embedding which is smaller than the 2,048-dimensional embeddings 

produced by earlier Inception models.   



The model has been implemented in both tf.slim and Keras; it has weights that have been 

pretrained with ILSVRC 2012 for both implementations. The Keras implementation of 

Inception-resnet v2 was used due to its implementational simplicity. Using Keras, the network 

can be trained by using data generators to feed the image data. To obtain the embedding, the last 

categorizing softmax layer was removed from the network, causing it to output an embedding 

from the dense 1,536-dimensional layer from before the softmax layer. Similarly to [10], another 

layer was added as a smaller embedding with 256 dimensions. A smaller embedding reduces the 

quality of the image embedding, but it matches the typical embedding sizes used in approaches 

such as TransE. This greatly increases the time required to create embeddings using those 

models. In tests on the Wikidata graph, this time difference was on the order of changing from 

20-30 minutes for a 100-dimensional embedding to nearly six hours for the 2,048-dimensional 

one. In order to use the typical categorical cross-entropy cost function along with the unlabeled 

images from Imagegraph, another softmax layer with 1,000 categories is added to this small 

embedding layer. To obtain the labels for the web-scraped images, the labels were computed 

using the pretrained resnet implementation. This allows the smaller embedding layer to be 

trained using the same categorical cross-entropy loss function to compare against desired labels. 

In addition, this allows the main resnet network to be frozen, which significantly speeds up 

training time. The large embeddings of the images are pre-computed  by the resnet and then are 

given as input to the new embedding layer. The resulting performance increase is significant. On 

a typical laptop processor, the smaller model computed over 1,000 times as many predictions in 

the same time that a single prediction of the resnet can be computed. 

 

Figure 5 Final layers of Inception-resnet v2 with smaller embedding layer and softmax. The original softmax layer is removed 
from the network. 

Keras is not able to feed input into intermediate layers of functional models. This is 

because the layer which should receive the intermediate input could potentially receive input 

from different sources in the model. In order to overcome this restriction, the new layers added to 

the model are sequential. This allows them to be incorporated into a new sequential model. The 

following code shows how this short model is created. It uses the functional model, 

small_softmax_model, built onto the existing resnet implementation and accesses the two 

new layers at the end (the small embedding and new softmax). An input layer is not required for 

the sequential model. I have tested training the network using both the functional model—the 

full network consisting of the resnet and additional embedding layers—and the sequential 

model—the additional embedding portion only. Training using either model successfully updates 



the network weights (of the small embedding portion), therefore affecting the output of either 

model. For training, the layers of the initial resnet model are frozen. After training, both models 

predict the same thing when given either image input or a pre-computed embedding input, for 

resnet and the small embedding model respectively. This indicates that the layers and their 

weights are shared between the two models and training can be performed on either if the 

embeddings of an image are pre-computed.  

end_model = Sequential(); 

end_model.add(small_softmax_model.layers[-2]); 

end_model.add(small_softmax_model.layers[-1]); 

end_model.compile(optimizer='sgd', loss = SOME_LOSS_FUNCTION, metrics = ['accuracy']) 
 

Figure 6 Code snippet of sequential model creration from existing functional model in Keras 

b. KADE  

KADE [13] is an embedding method which seeks to create aligned embeddings of KGs 

and documents. It uses a regularization process during the training of both embedding types to 

create a joint embedding space which seeks to preserve the properties of both original embedding 

methods used. It uses the original loss function of both embedding techniques in order to 

preserve their semantic properties and adds a regularization term to each loss function based on 

the difference between an embedding and the embedding of the aligned data type. KADE uses an 

iterative procedure to build the embeddings of both models concurrently, ensuring that each 

embedding technique has an influence on the resulting joint embedding space, preserving the 

properties of both techniques. 

 

Figure 7 Illustration of KADE [13] 

The Inception-resnet model can be implemented into the KADE system as a class. The 

Keras implementation uses Tensorflow as a backend. The modified resnet model is created 

during the construction of the class. These are compiled using a custom loss function which adds 

a regularization term based on matrix of image embeddings and KG embeddings. The initial 

embeddings matrix is created and added to the Tensorflow graph. For training, a custom data 

generator implementation is used to load data to feed Keras’ fit_generator function which trains 

the network for the desired number of epochs. This allows the custom data order that KADE 

requires in order to switch between training the two embedding techniques.   

In order to implement KADE’s regularization function into the loss function, a Keras 

regularizer was initially considered. Keras has three types of regularizers: kernel, activation, and 

bias. The kernel regularization is a replacement for weight regularization (and essentially does 



the same thing). A regularizer can be a function or a callable class. It receives a tensor argument 

consisting of the layer’s weights, activations, or bias. It also returns a tensor. Unfortunately, this 

regularization function is only called once; the tensor value it returns is incorporated into the 

Tensorflow graph. Thus, other code cannot be run or calculated from functions in the regularizer 

function.  

It is also possible to implement custom loss function to be used by Keras when a model is 

compiled. Like the regularization function, this is only called to create a tensor object for the 

graph. As an example, it is possible to take a copy of Keras’ categorical cross-entropy function 

and add a regularizer to it. Keras calls the Tensorflow backend version of the function, so a 

tensor object can be added to that. An untested method to implement the KADE regularization is 

to have the two embeddings matrices as instance variables in a class. Then, in the loss function 

compute the desired regularization and add it to the typical loss. Add the other tensors used to the 

Tensorflow backend so the regularization term continues to be updated.  

Conclusion 

This work has explored techniques for the creation of a joint embedding space between 

images and knowledge graphs using KADE. It examines the creation of a dataset for the task 

consisting of human-verified image classifications mapped to knowledge graphs. First, it 

investigates the linking of standard image datasets, particularly Imagenet, to knowledge graphs. 

Wikidata and DBPedia are both able to be mapped to Imagenet synsets. Wikidata is found to 

have a substantial number of entities that can be mapped to Imagenet. These entities are used to 

create a non-disjoint subgraph of Wikidata which is very sparse and shows poor results for the 

TransE model. In addition, this work also explores the use of a dataset created via search engine 

scraping (the Imagegraph dataset [10]) in order to provide an implementation of the proposed 

model. The image embedding is created using a smaller layer attached to the Inception-resnet v2 

model. Due to time constraints on the project, this implementation has been unable to undergo 

testing. Future work can examine the hyperparameters of the model, test other embedding 

methods, and evaluate the performance of the model on other datasets. 

During my time working on my project during my study abroad program, I have been 

fortunate to have had the opportunity to learn several new skills, consisting of both hard and soft 

skills that will surely be useful in my future career. I have been able to learn about embedding 

methods for a variety of data types, such as knowledge graphs, documents, images, and words. I 

have explored state of the art deep learning image classification models, have learned about the 

semantic web, RDF format, and SPARQL queries, and have also become acquainted with several 

important benchmark datasets such as Wikidata and Imagenet.   

In addition to hard skills, I have also been able to better observe the lives of Ph.D. students 

and to have a better understanding of the requirements and challenges of obtaining the degree 

which will be useful when I enter graduate school myself. I have been able to experience the 

European academic environment, and I also was able to experience taking an oral exam for a 

class.  
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