
Optimization of a hybrid electric vehicle
energy management control parameters by

metaheuristic method

Team E:
Russ Campbell

Carl Edwards

Samira Shamsir

Submitted: May 3, 2018

1. Introduction

Hybrid electric vehicles (HEV) offer benefits of low fuel consumption and reduced emissions

when compared to conventional vehicles. With these benefits comes the burden of complexity

in blending the operation of electric and conventional powertrain components to maximize

efficiency while still meeting vehicle performance requirements. In this project an objective

function will be utilized to attempt to minimize fuel consumption, and subsequently exhaust

emissions, through application of metaheuristic optimization methods.

Optimization algorithms like particle swarm and genetic algorithms can be used to search for

solutions to multi-objective problems. Genetic algorithms work based on treating problem

parameters like genes in natural selection, while particle swarm moves a number of "particles"

around the problem's solution space by assigning velocity based on discovered best values.

These are both metaheuristic approaches which allow them to search large solution spaces

given few assumptions. Simulation results will relate the effectiveness of the control strategy

optimization and the practicality of the approach.

2. Problem Description

The fuel economy, emissions, and dynamic performance of a HEV depend significantly on the

control strategy of the powertrain components, which is a complex system integrating the

operation of mechanical, electrical, chemical, and thermodynamic devices. Thus, optimization

of the operation of this system through refinement of control strategy parameters is required

to obtain an efficient HEV design [1]. Thus, the selection of an optimization algorithm may have

a significant impact on the performance and efficiency of the vehicle.

The implemented control strategy for the parallel HEV

architecture, depicted in Figure 1, operates in such a way

that the internal combustion engine (ICE) works as the main

source of power and supplies the majority of the driver

demanded power, while the electric motor is used to supply

dynamic or peak power when requested by the driver.

Charge sustaining operation whereby the state-of-charge

(SOC) of the battery is maintained during all operating

conditions functions based on the following rules:

(1) The electric motor is used for power assist, if the

driver demanded power is greater than the

Figure 1: Parallel HEV Architecture

maximum ICE power, at a given ICE operating speed;

(2) The electric motor charges the battery during regenerative braking events;

(3) When battery SOC is lower than the set minimum value, the ICE produces extra

power, to sustain battery SOC.

There are several current research works that employ traditional approaches to optimize the

parameters of HEV control strategies. However, the requirement of numerous assumptions in

the objective function including continuity, differentiability, and satisfaction of the Lipschitz

condition makes these methods unsuitable [3]. In addition, usually there are many local minima

in the multi-modal response function of the parallel HEV. Most of the local optimizers involve

gradient based algorithms such as sequential quadratic programming (SQP) use the derivative

information to find the local minima and they do not search the entire design space to find the

global minimum [4]. Hence, derivative-free algorithms, such as genetic algorithm (GA) and

particle swarm optimization (PSO) are more suitable to address the issues of a noisy and

discontinuous objective function like the HEV drivetrain [5]. These derivative-free methods

usually sample a large portion of the design space to find a global solution. Population based

stochastic optimization methods such as the GA and PSO are initialized with a population of

random solutions and the optimum is determined by updating generations. PSO has some

advantages over GA such as it has no evolution operators like crossover and mutation [6]. In

PSO, the potential solutions, called particles, fly through the problem space by following the

current optimum particles.

In this project, optimization of the HEV control system parameters to improve fuel economy

will be evaluated by implementing particle swarm optimization (PSO) and genetic algorithm

(GA) optimization. These algorithms will consider drivetrain components and control strategy

parameters as design objectives, and vehicle performance parameters as constraints.

3. Methodology

The HEV will be modeled utilizing a software in the loop (SIL) model created using Matlab. The

SIL environment uses soft electronic control units (soft-ECUs) to simulate the controls logic

which interacts with plant models representing the major vehicle powertrain systems, driver,

and environment. The focus of this project will be on optimizing energy management control

parameters which are responsible for conveying the maximum available power from the

battery, maintaining SOC, and ensuring safe vehicle operation.

∫T|y1(t)| dt
0 Fc(r,u) =

 ∫T|y2(t)| dt
0

As outlined in the problem description maintaining charge sustaining operation is accomplished

through regenerative braking or by utilizing power from the engine through cruise charging.

The functionality of this strategy relies on the effective selection of several parameters

including the target SOC, maximum electrical accessory power, power required to maintain SOC

(Psoc) offset, and maximum cruise charge (CC) power. These values must be derived from

modeling and real world testing to enable charge sustaining operation under all conditions. This

compromise creates an opportunity to optimize the parameters based on the current vehicle

operating conditions to reduce the amount of fuel used and improve vehicle performance.

Within the optimization algorithm simulation iterations the control input values will be

evaluated using metaheuristic techniques to maximize fuel efficiency. Contributing operating

parameters are listed below in Table 1, and the function used to evaluate fuel efficiency, Fc, is

defined as Equation 1.

Where r = the reference input, u = the control input, and y represents the model outputs.

Table 1: Reference Input, control input, and output of the system

Variable Description

r1 Target vehicle speed (km/h)

u1 Target SOC (%)

u2 AccELec maximum power (W)

u3 Psoc offset (%)

u4 Cruise Charge maximum power (W)

y1 Actual vehicle speed (km/h)

y2 Instantaneous fuel consumption (L)

The particle swarm optimization algorithm is governed by the following equations and

variables. There are 𝑁 particles each with 𝐴 parameters. The position of these particles, 𝑝, is an

𝐴 𝑥 𝑁 matrix. We represent the velocity, 𝑣, of all the particles with an 𝐴 𝑥 𝑁 matrix as well.

There are four empirically determined weights, 𝑤1 = 0.3, 𝑤2 = 0.5, 𝑤3 = 0.4, and 𝑤4 = 1.5.

The first weight applies to inertia, the second to the global best difference, the third to the

personal best difference, and the fourth to a randomized value. The algorithm also uses the

global best solution, 𝑔𝑏𝑒𝑠𝑡, and personal best, 𝑝𝑏𝑒𝑠𝑡, parameters of each particle. 𝑝𝑏𝑒𝑠𝑡 is an

𝐴 𝑥 𝑁 matrix of all the particles best solutions, and 𝑔𝑏𝑒𝑠𝑡 is an 𝐴 𝑥 1 matrix as it only

Equation 1

represents the best solution for one particle. The algorithm runs through 𝑡𝑒𝑛𝑑 iterations where

𝑡 is the current iteration. It also utilizes an 𝐴 𝑥 2 matrix, 𝑟𝑎𝑛𝑔𝑒𝑠, which represent the potential

range of each parameter. Utilizing a random number 𝑅 uniformly chosen in [0,1], we calculate

the starting population randomly.

𝑝𝑖,𝑗 = 𝑅 ∗ (𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2 − 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1) + 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1 Equation 1

A detailed description of the optimization algorithm follows.

Begin iteration one (𝑡 = 1):

For each iteration, evaluate the model using given parameters for each particle 𝑗 (column in 𝑝).

If the solution for the particle is better than its personal best (which we remembered for

efficiency), we will store that column in the appropriate column 𝑗 of 𝑝𝑏𝑒𝑠𝑡. We will calculate

velocity using the following formula:

𝑔𝑏𝑒𝑠𝑡𝑚 = [𝑔𝑏𝑒𝑠𝑡 | 𝑔𝑏𝑒𝑠𝑡 | … | 𝑔𝑏𝑒𝑠𝑡] Equation 3

 (𝑔𝑏𝑒𝑠𝑡 augmented with itself 𝑁 times)

Let 𝑅𝑚 be a matrix 𝐴 𝑥 𝑁 which is comprised of random numbers [0,1].

𝑣 = 𝑤1 ∗ 𝑣 + 𝑤2 ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑝) + 𝑤3 ∗ (𝑔𝑏𝑒𝑠𝑡𝑚 − 𝑝) + 𝑤4 ∗ (𝑅𝑚 ∗ 2 − 1) Equation 4

Next, apply the velocity to 𝑝:

𝑝 = 𝑝 + 𝑣; Equation 5

Apply boundaries:

𝑝𝑖𝑗 = {

𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1 𝑖𝑓 𝑝𝑖,𝑗 < 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1

𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2 𝑖𝑓 𝑝𝑖,𝑗 > 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2

𝑝𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 6

Begin the next iteration until 𝑡𝑒𝑛𝑑 iterations have occurred. Increment 𝑡 and repeat the same

process if 𝑡 ≤ 𝑡𝑒𝑛𝑑.

The genetic algorithm utilizes the mechanisms of mutation and crossover, using methodology

from Ref. [7] with significant modification to fit the problem. It iterates for 𝐺 generations with a

empirical mutation rate 𝑃𝑚 = 0.033 and a crossover rate 𝑃𝑐 = 0.6. The population is created

randomly from within given ranges, just like the PSO. Each individual in the algorithm has 𝐿

genes, each of which is a floating point number.

The algorithm begins by computing the fitness, or value of the objective function, for all 𝑁

individuals in the population. 𝑁 is constrained 𝑁 𝑚𝑜𝑑 2 = 0. Fitness is recorded in a vector of

length 𝑁. Evaluating fitness can be parallelized to improve algorithm speed. Following the

fitness evaluation, we then check the population for a new best fitness, and record population

statistics.

Next, the subsequent population of the algorithm is created. We start by creating a new vector

for fitness by normalizing it with respect to its sum:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠
 Equation 7

Thus, ∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1 Equation 8

Next, we create a running average from these values. This is a vector of size 𝑁 as well. The

value of element 𝑖 in this vector is equivalent to the sum of the previous elements plus the 𝑖th

element of 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠. Thus, the last value of the running average is 1.

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖 = ∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑛

𝑖

𝑛=1

 Equation 9

Next, two random numbers, 𝑖1 and 𝑖2 are selected to enable selection of parents for the

algorithm based on the running average. We select the parents based on the running average.

The parent 1 or 2 selected is the highest index 𝑛 where 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑛 < 𝑖1 𝑜𝑟 2. Higher

fitness parents are more likely to be selected. If the second parent is identical to the first, we

use a heuristic of selecting the next individual in case there is only one high fitness member of

the population.

To increase the effectiveness of this procedure, we shift the fitness value down by 23

(determined empirically) to cause higher fitness parents to have an increased chance of

procreation. This is because the approach used for selecting parents involves normalizing the

values. All fitness values remain greater than zero.

We create two offspring 𝑜1 and 𝑜2 as copies of each parent individual. Next, we create a

random number within [0,1]. If this random number is less than the probability of crossover, 𝑃𝑐,

then we uniformly select a random integer 𝑎 = [1, 𝐿]. We use this as a single inflection point

and switch all genes (parameter values) in 𝑜1 and 𝑜2 after (and including) this point 𝑎.

Subsequently, the algorithm loops through all genes individually in both children. We mutate

each gene to a random number in the correct range with a probability 𝑃𝑚. We add the two

children to our population and repeat the process until the new population is size 𝑁. We repeat

this procedure for 𝐺 iterations.

In addition, we also implemented elitism into a version of the genetic algorithm. This

implementation involves copying a small proportion of the fittest candidates, unchanged, into

the next generation. This was done with two elites, so then only
𝑁

2
− 2 children are created. The

two elites join the new population without any changes. This will hopefully prevent the

population from regressing to lower fitness levels while still retaining benefits of the algorithm.

4. Results and Discussion

For this project a modified SIL model was developed which allows the optimization function to

update parameters, shown in Table 1, programmatically. Real world driving data, ~1600 miles,

was utilized to validate the software in the loop (SIL) model against the real world vehicle

performance. At each iteration the fuel economy and electrical energy consumption of the

vehicle is evaluated.

Table 2: Control Input parameters for optimizing Vehicle Fuel Economy Min Max

b1 Target SOC (%) Target_SOC 40 80

b2 Accessory Electrical maximum power (W) AccElec 300 900

b3 Psoc offset Psoc_Offset 1 20

b4 Cruise Charge Max Power (W) CC_Upper 5000 15000

To evaluate performance of the vehicle and optimization method simulation has been

conducted over a standard set of drive cycles, four EPA US06 or Supplemental Federal Test

Procedure drive cycles as shown in Figure 2, for the baseline and optimized parameter values

resulting from the optimization methods. This set of cycles represents 40 minutes and 32 miles

of driving with an average speed of just over 48 miles per hour (MPH).

Baseline parameter values were identified through trial and error controls prototyping, and

adjusted based on real-world driving. The baseline model will be run over 10 sets of cycles

representing 320 miles and over 6 hours of driving, resulting in a baseline fuel economy of

32.58 miles per gallon (MPG). The results from the 10 simulations will then be used to compare

against the “optimal” solution generated by the algorithm.

4.1 Particle Swarm Optimization Results

To investigate the efficacy of the PSO algorithm simulations were run with varying numbers of

particles, from ten to one hundred in increments of ten. The results of all PSO simulations are

summarized in Table 3, and Figure 2 depicts the 20 particle, P20, simulation results. Figures

depicting the results of all the remaining PSO simulations are included in the appendix for your

reference.

The data clearly illustrates that a larger number of particles does not necessarily indicate a

better result. The parameter values are also similar over the range of particle numbers, with the

exception of the cruise charge value for the 20 particle simulation.

0

5

10

15

20

25

30

35

40

1
7

0
1

3
9

2
0

8
2

7
7

3
4

6
4

1
5

4
8

4
5

5
3

6
2

2
6

9
1

7
6

0
8

2
9

8
9

8
9

6
7

1
0

3
6

1
1

0
5

1
1

7
4

1
2

4
3

1
3

1
2

1
3

8
1

1
4

5
0

1
5

1
9

1
5

8
8

1
6

5
7

1
7

2
6

1
7

9
5

1
8

6
4

1
9

3
3

2
0

0
2

2
0

7
1

2
1

4
0

2
2

0
9

2
2

7
8

2
3

4
7

V
e

h
ic

le
 S

p
e

e
d

 (
m

/s
)

Time (s)

4x US06 Drive Cycle Vehicle Speed (m/s)
32.04 Miles, average speed of 48.4 MPH

Vehicle Speed (m/s)

Figure 2: Four US06 Drive Cycles, Vehicle Speed vs. Time

Table 3: PSO Simulation Results

 Iteration Max MPG AccElec (W) CruiseCharge(W) PsocOffset TargetSOC

P10 29 34.92 711 10732 5.19 40%

P20 49 34.93 682 7001 5.68 40%

P30 188 34.92 741 11556 2.74 40%

P40 377 34.91 531 10915 3.87 40%

P50 417 34.91 598 11189 2.27 40%

P60 349 34.9 737 12451 6.77 40%

P70 326 34.92 557 10955 5.55 40%

P80 448 34.91 773 10321 6.71 40%

P90 431 34.92 623 8907 2.75 40%

P100 908 34.91 485 11364 4.62 40%

Figure 3: PSO Simulation results, 20 particles over 10 iterations

The results displayed in Figure 2 allow us to propose several conclusions. First the oscillatory

nature of the simulated fuel economy suggests that the solution space contains multiple local

maximums. Due to the shape of the solution space multiple similar local optimums occur which

are close to the global maximum, which allows for a smaller number of particles to converge to

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

14000

16000

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6

M
P

G
/

A
cc

El
e

c
P

o
w

e
r

(W
)/

 T
ar

ge
t

SO
C

/
P

SO
C

 O
ff

se
t

C
ru

is
e

 C
h

ar
ge

 P
o

w
e

r
(W

)

Results from PSO Algorithm over 4x US06 Drive Cycle, 20 particles over 10 iterations
200 Simulations, 6,408 miles of driving

AccElec

CruiseCharge

MPG

PsocOffset

TargetSOC

Max: 34.93 mpg
at 49 simulations

a local maximum. These local optimums, and similar points, exist for several different

configurations of parameters which offer multiple solutions for optimizing fuel economy and

reducing emissions. In addition the Cruise Charge and Psoc Offset parameters appear to

converge to optimal values as the simulation proceeds confirming visually the functionality of

the algorithm.

The particle swarm optimized fuel economy reached a maximum value of 34.93 MPG after 49

iterations. This is a 6.7% improvement over the baseline simulated fuel economy value of 32.58

MPG.

4.2 Genetic Algorithm Optimization Results

In a manner similar to the approach taken with the PSO algorithm the GA optimization

simulations were run over a range of generation values as shown in Table 4. The performance

of the GA approaches the maximum fuel economy result from the PSO with similar parameter

values.
Table 4: Genetic Algorithm Simulation Results

Genetic Algorithm Optimization on 4 x US06 Drive Cycle

 Iteration Max MPG AccElec (W) CruiseCharge(W) PsocOffset TargetSOC

G20 249 34.84 432 12749 5 40%

G40 125 34.86 525 13086 4 40%

G80 787 34.79 846 13547 9 40%

G100 144 34.78 725 8500 7.3 40%

Similar to the PSO, the simulations with a smaller number of generations seem to perform

better due to a large number of local maximums within the solution space. In contrast to the

PSO results shown in Figure 2, the GA results do not depict convergence of the parameters

towards an optimal value, as shown in Figure 3. The maximum fuel economy result from the GA

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

14000

16000

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

M
P

G
/

A
cc

El
e

c
P

o
w

e
r

(W
)/

 T
ar

ge
t

SO
C

/
P

SO
C

 O
ff

se
t

P
o

w
e

r
(W

)

Results from Genetic Algorithm over 4x US06 Drive Cycle, 20 generations
400 Simulations, 12,816 miles of driving

AccElec
CruiseCharge
MPG
PsocOffset
TargetSOC

Max: 34.84 mpg
at 249 simulations

Figure 4: Genetic Algorithm Results for 20 generations

represents a 6.5% improvement over the baseline of 32.58 MPG.

As the GA did not reach or exceed the results of the PSO algorithm a modified GA was

implemented utilizing an elitism selection method which copies a small proportion of the fittest

candidates unchanged into the next generation. This Elitism GA, (EGA), was then applied to the

20 generation case to further explore the solution space for maximal values of fuel economy

that meet or exceed the results of the PSO. Figure 4 represents EGA results which exceed the

maximum fuel economy found by the PSO and GA. This maximum of 35.17 MPG represents a

7.4% increase over the baseline fuel economy of 32.58 MPG.

Figure 5: Elitism Genetic Algorithm Simulation Results

Additionally the PsocOffset and Cruise Charge parameters appear to converge to an optimal

value as the simulation progresses, in a similar manner to the PSO results. Therefore the EGA

method has proven to be optimal for exploring this solution space as it reached what is

assumed to be the global maximum, exceeding the maximum reached by the PSO, and provides

some semblance of convergence for the parameters.

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1

M
P

G
/

A
cc

El
e

c
P

o
w

e
r

(W
)/

 T
ar

ge
t

SO
C

/
P

SO
C

 O
ff

se
t

P
o

w
e

r
(W

)

Results from EGA over 4x US06 Drive Cycle, 20 generations
400 Simulations, 12,816 miles of driving

AccElec

CruiseCharge

MPG

PsocOffset

TargetSOC

Max: 35.17 mpg
at 375 simulations

5. Conclusion

In this project, population based stochastic optimization techniques such as particle swarm

optimization (PSO) and genetic algorithm (GA) have been implemented to derive optimized

parameters for the battery management system of a HEV. The intent of the algorithms is to

optimize the HEV energy management parameters on the operating conditions of the vehicle to

achieve minimal fuel consumption.

Results from simulations totaling over 340,000 miles show that both of these optimization

techniques can provide significant improvement in vehicle control system optimization over

conventional controls prototyping methods. Based on the results presented, the GA and PSO

simulations with a smaller number of generations or particles respectively seem to perform

better due to a large number of local maximums within the solution space that are close to the

global maximum. Therefore the EGA method has proven to be optimal for exploring this

solution space as it reached what is assumed to be the global maximum, exceeding the

maximums reached by the GA and PSO, as well as providing some semblance of convergence

for the parameters.

In addition, the developed methodology can provide a firm selection platform for components

and parameters to efficiently handle the complex task of HEV system design which contains

numerous local minima, discontinuous objective functions and nonlinear constraints.

In the future, this work will be formulated into an abstract for submission to the Society of

Automotive Engineers for presentation at the upcoming International Powertrains, Fuels and

Lubricants Meeting under the general powertrain development section which features a

session on control system design and calibration. More immediately this work will be combined

with tangential work to improve the SIL plant model fidelity and presented at the EcoCAR 3

competition May 18-19 as part of the MathWorks Modeling Award event.

References:
[1] X. Li and S. S. Williamson, “Comparative investigation of series and parallel hybrid electric vehicle (HEV)
efficiencies based on comprehensive parametric analysis,” in Proc. IEEE Vehicle Power and Propulsion Conf.,
Arlington, TX, Sept. 2007.
[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE International Conf. on Neural
Networks, 1995, vol. 4, pp. 1942-1948.
[3] K. Wipke, T. Markel, and D. Nelson, “Optimizing energy management strategy and degree of hybridization for a
hydrogen fuel cell SUV,” in Proc. 18th International Electric Vehicle Symposium, Berlin, Germany, 2001.
[4] R. Fellini, N. Michelena, P. Papalambros, and M. Sasena, “Optimal design of automotive hybrid powertrain
systems,” in Proc. 1

st
 International Symposium on Environmentally Conscious Design and Inverse Manufacturing,

Tokyo, Japan, Feb. 1999, pp.400-405.
[5] T. Markel and K. Wipke, “Optimization techniques for hybrid electric vehicle analysis using ADVISOR,” in Proc.
ASME International Mechanical Engineering Congress and Expo., New York, NY, Nov. 2001.

[6] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer, 2008.
[7] G. W. Flake, The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems,

and Adaptation, Cambridge, MA, MIT Press, 1998, pp. 343-350.

Appendix of Figures

Appendix of Code
Genetic Algorithm Code
function finalp = GeneticAlgorithm_1_eliticism()

%Test function

f= @(x) cos(x(1))+sin(x(2))+cos(x(3))+sin(x(4))+cos(x(5)) + ...

 sin(x(1)+x(2)); %the best so far is [37.7399 89.4826 546.6246 1.6254 56.7295]

L=4; %number of genes

N=20; %population size, make this even

G=20;%number of generations 15:100

pm=.033;%probability of mutation

pc=.6;%probability of crossover

eliteNum=2;

%Parameter ranges (smallest value then largest, this is a Lx2 matrix.

ranges=[300,900;

 1,20;

 .40,.80;

 5000,15000;

];

%%

pop=zeros(N,L); %population

pop=init(pop,ranges); %initialize population

gbest=zeros(L,1); %global best parameters

gbestVal=0; %global best val

 fprintf(' MPG AccElec PsocOffset TargetSOC CruiseCharge\n'); %[labels

for values]

%Remember fitness

fitness=zeros(1,N);

fitness_norm=zeros(1,N);

%Stats:

totalFitness_s=zeros(G,1);

averageFitness_s=zeros(G,1);

bestFitness_s=zeros(G,1);

%Generation loop

for g=1:G

 %Calculate fitness. -23 increases algorithm performance.

 parfor j=1:N

 fitness(j)=F(pop(j,:))-23;

 end

 %Go through fitnesses and test for new best value. This is done in

 %a seperate for loop to allow parallelization of the algorithm.

 for j=1:N

 if (fitness(j)>gbestVal)

 gbest=pop(j,:);

 gbestVal=fitness(j);

 end

 end

 %Normalize the fitnesses so that the sum is 1

 totalFitness=sum(fitness);

 fitness_norm=fitness/totalFitness;

 %fprintf("G: %d, F=%f\n",g,totalFitness);

 %Record stats at iteration g

 totalFitness_s(g)=totalFitness;

 averageFitness_s(g)=mean(fitness);

 bestFitness_s(g)=max(fitness);

 %Generate running total for parent selection later.

 %This allows us to use a rand() in order to select parents randomly,

 %but weighted towards better fitnesses. Randomness is important for

 %the function of the algorithm. The following for loop creates the

 %running total using the already normalized fitness values.

 running_total=zeros(1,N);

 running_total(1)=fitness_norm(1);

 for j=2:N

 running_total(j)=fitness_norm(j)+running_total(j-1);

 end

 %Change population

 newPop=zeros(N,L);

 %This is done N/2 times because you get two children each time.

 %Thus, you get a population of size N again. Note, constrain N with

 % N mod 2 = 0, N > eliteNum

 %This requires eliteNum==2

 [tmp,tmp2]=sort(fitness);

 elite1=pop(tmp2(end),:);

 elite2=pop(tmp2(end-1),:);

 for j=1:N/2 - eliteNum/2

 %Select two parents p1,p2 using two random values i1,i2

 i1=rand();

 p1=-1;

 i2=rand();

 p2=-1;

 %Use our random value to select a parent. This is weighted based

 %on the porportion of fitness values.

 for k=1:N

 if (p1==-1 && i1<running_total(k))

 p1=k;

 end

 end

 %Select parent 2 the same way, but ignore duplicates.

 while (p2==-1 || p2==p1) %we haven't run or they are the same

 for k=1:N %I use a second loop so this can repeat

 if (i2<running_total(k))

 p2=k;

 if (k==p1 && p1~=N) %Quick way of ignoring duplicate

 p2=k+1;

 else

 p2=k;

 end

 break;

 end

 end

 if (p2==p1)%if statement is not needed, but is more clear

 i2=rand(); %We need to try a new random parent

 end

 end

 %Create offspring - initially

 o1=pop(p1,:);

 o2=pop(p2,:);

 %Cross them over - I pick a random index and flip all the genes

 %in the two children after that happens

 if (rand()<pc)%Check if it occurs

 point=randi(L);

 tmp=o1(point:L);

 o1(point:L)=o2(point:L);

 o2(point:L)=tmp;

 end

 %Mutate offspring - each gene in each offspring has a pm chance of

 %being mutated to something uniformly random in its desired range.

 for k=1:L %offspring 1

 if (rand()<pm)

 o1(k)=rand()*(ranges(k,2)-ranges(k,1))+ranges(k,1);

 end

 end

 for k=1:L %offspring 2

 if (rand()<pm)

 o2(k)=rand()*(ranges(k,2)-ranges(k,1))+ranges(k,1);

 end

 end

 %Put the children in the new population

 newPop(2*j-1,:)=o1;

 newPop(2*j,:)=o2;

 end

 %assume eliteNum == 2

 newPop(end,:)=elite2;

 newPop(end-1,:)=elite1;

 pop=newPop;

 %Bounderies - this shouldn't be an issue on a GA, but we'll check

 %anyway

 pop=bound(pop, ranges);

end

finalp=gbest;

fprintf('%f\n', gbestVal);

figure(1);

plot(1:G,totalFitness_s);

title('Total Fitness');

figure(2);

plot(1:G,averageFitness_s);

title('Average Fitness');

figure(3);

plot(1:G,bestFitness_s);

title('Best Fitness');

figure(4);

plot(1:N,sort(fitness));

title('Population Fitness');

end

%Put points outside the boundery back into the boundery

function p = bound(p, ranges)

[pnum]=size(p);

pnum=pnum(1);

[par] = size(ranges);

par=par(1);

for i=1:pnum

 for j=1:par %ranges

 if (p(i,j)<ranges(j,1)); p(i,j)=ranges(j,1); end

 if (p(i,j)>ranges(j,2)); p(i,j)=ranges(j,2); end

 end

end

end

%Initialize uniformly randomly from desired ranges

function p = init(p, ranges)

[pnum]=size(p);

pnum=pnum(1);

[par] = size(ranges);

par=par(1);

for i=1:pnum

 for j=1:par %ranges

 p(i,j)=rand()*(ranges(j,2)-ranges(j,1))+ranges(j,1);

 end

end

end

Fuel Economy Function Code
function fuel_mileage_mpg = F(x)

%Get fuel consumption and distance

%drive_cycle_distance_m = evalin('base', 'sch_metadata.distance.value');

evalin('base', 'load(''wtf.mat'')');

evalin('base', sprintf('accelec.plant.init.pwr=%d;',x(1)));

evalin('base', sprintf('vpc.prop.init.emcp_psoc_table_offset=%d;',x(2)));

assignin('base', 'Target_SOC',x(3));

assignin('base', 'CC_Upper',x(4));

%assignin('base', 'BPP_Regen_Max',x(1));

%assignin('base', 'OffThrottleRegen_Max',x(2));

%assignin('base', 'Psoc_Upper',x(5));

%assignin('base', 'Psoc_Lower',x(6));

%For structs use this format

warning off;

 simOut = sim('Camaro_SIL','SimulationMode','Accelerator');

 %set_param('Camaro_SIL','SimulationCommand','update');

FC = max(simOut.get('eng_plant_fuel_cum_simu'));

%Dist = evalin('base','sch_metadata.distance.value');

V = trapz(simOut.get('ess_plant_volt_out_simu'));

I = trapz(simOut.get('ess_plant_curr_out_simu'));

D = trapz(simOut.get('chas_plant_lin_spd_out_simu'));

Dx = D*0.0000621371;

 fuel_mileage_mpg = Dx/FC;

 PElec = V*I;

 fprintf(' %e %e %4.2f %4.2f %4.2f %4.2f %4.2f

%4.2f\n',fuel_mileage_mpg,PElec,x(1),x(2),x(3),x(4),x(5),x(6));

 %disp(max(evalin('base','eng_plant_fuel_cum_simu')));

 %disp(max(evalin('base','BPP_Regen_Max')));

end

Particle Swarm Code

function finalp = ParticleSwarm()

 ms = MultiStart('UseParallel',true);

 pctRunOnAll('addpath C:\Users\campbellru\Documents\MATLAB\PSO_04112018')

%Function

%f= @(x) ((cos(x(1)./4) + sin(x(2)))./((x(1).^2+x(2).^2).^.25)).*sin(x(1).*x(2)/10) + ...

% ((cos(x(3)./4) + sin(x(4)))./((x(3).^2+x(4).^2).^.25)).*sin(x(3).*x(4)/10) + ...

% sin(x(5));

f= @(x) cos(x(1))+sin(x(2))+cos(x(3))+sin(x(4))+cos(x(5)) + ...

 sin(x(1)+x(2));

par=4;

pNumber=60;

tend=10;

%weights

%inertia, gbest, pbest, rand

w=[.3,.5,.4, 1.5];

%Weights on individual velocities

%v_weights=[1,1,100,1,1];

ranges=[300,900;

 1,20;

 .40,.80;

 5000,15000;

];

%%

p=zeros(pNumber,par); %particles (position)

p=init(p,ranges);

solu=zeros(pNumber,1); %Remember solution

v=zeros(pNumber,par); %velocity

best=zeros(pNumber,1); %Remember value of personal best

bestp=p; %Remember coordinates of personal best

gbest=0; %global best index

gbestVal=0; %global best val

%Initialize

 fprintf(' MPG PElec Psoc_Upper Psoc_Lower CruiseCharge PsocOffset

TargetSOC\n'); %[labels for values]

for i=1:tend

 parfor j=1:pNumber

 rv = F(p(j,:)); %This is where the optimized function is called

 solu(j)=rv;

 if rv > best(j)

 best(j) = rv;

 bestp(j,:)=p(j,:);

 end

 end

 [gbestVal, gbest]=max(best);

 %Find velocity

 %w1*intertia + w2 * globalBestDifference + w3 * personal Best distance

 v= w(1)*v + w(2)*(bestp-p) + w(3)*(repmat(bestp(gbest,:),pNumber,1)-p) +w(4)*(rand(pNumber,par).*2-1);

 %note that rand is [0,1] so it is changed to [-1,1]=[0,1]*2-1

 %Scale to 1

 %v=sqrt(particle(:,6).^2+particle(:,7).^2);

 %v=v+.01; %avoid divide by 0 hack

 %particle(:,6)=2.*particle(:,6)./v;

 %particle(:,7)=2.*particle(:,7)./v;

 %v=v.*v_weights;

 disp(i);

 %disp(v);

 %Add velocity

 p=p+v;

 %Bounderies

 p=bound(p, ranges);

 %quantize

 %bounds

end

finalp=bestp(gbest,:);

disp(finalp);

%disp(best);

fprintf('%i %f\n',gbest, gbestVal);

end

function p = bound(p, ranges)

[pnum]=size(p);

pnum=pnum(1);

[par] = size(ranges);

par=par(1);

for i=1:pnum

 for j=1:par %ranges

 if (p(i,j)<ranges(j,1)); p(i,j)=ranges(j,1); end

 if (p(i,j)>ranges(j,2)); p(i,j)=ranges(j,2); end

 end

end

end

function p = init(p, ranges)

[pnum]=size(p);

pnum=pnum(1);

[par] = size(ranges);

par=par(1);

for i=1:pnum

 for j=1:par %ranges

 p(i,j)=rand()*(ranges(j,2)-ranges(j,1))+ranges(j,1);

 end

end

end

