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1. Introduction 

Hybrid electric vehicles (HEV) offer benefits of low fuel consumption and reduced emissions 

when compared to conventional vehicles. With these benefits comes the burden of complexity 

in blending the operation of electric and conventional powertrain components to maximize 

efficiency while still meeting vehicle performance requirements. In this project an objective 

function will be utilized to attempt to minimize fuel consumption, and subsequently exhaust 

emissions, through application of metaheuristic optimization methods.   

Optimization algorithms like particle swarm and genetic algorithms can be used to search for 

solutions to multi-objective problems. Genetic algorithms work based on treating problem 

parameters like genes in natural selection, while particle swarm moves a number of "particles" 

around the problem's solution space by assigning velocity based on discovered best values. 

These are both metaheuristic approaches which allow them to search large solution spaces 

given few assumptions. Simulation results will relate the effectiveness of the control strategy 

optimization and the practicality of the approach. 

2. Problem Description 

The fuel economy, emissions, and dynamic performance of a HEV depend significantly on the 

control strategy of the powertrain components, which is a complex system integrating the 

operation of mechanical, electrical, chemical, and thermodynamic devices. Thus, optimization 

of the operation of this system through refinement of control strategy parameters is required 

to obtain an efficient HEV design [1]. Thus, the selection of an optimization algorithm may have 

a significant impact on the performance and efficiency of the vehicle.  

The implemented control strategy  for the parallel HEV 

architecture, depicted in Figure 1,  operates in such a way 

that the internal combustion engine (ICE) works as the main 

source of power and supplies the majority of the driver 

demanded power, while the electric motor is used to supply 

dynamic or peak power when requested by the driver. 

Charge sustaining operation whereby the state-of-charge 

(SOC) of the battery is maintained during all operating 

conditions functions based on the following rules: 

(1) The electric motor is used for power assist, if the 

driver demanded power is greater than the 

Figure 1: Parallel HEV Architecture 



maximum ICE power, at a given ICE operating speed; 

(2) The electric motor charges the battery during regenerative braking events; 

(3) When battery SOC is lower than the set minimum value, the ICE produces extra 

power, to sustain battery SOC. 

 

There are several current research works that employ traditional approaches to optimize the 

parameters of HEV control strategies. However, the requirement of numerous assumptions in 

the objective function including continuity, differentiability, and satisfaction of the Lipschitz 

condition makes these methods unsuitable [3]. In addition, usually there are many local minima 

in the multi-modal response function of the parallel HEV. Most of the local optimizers involve 

gradient based algorithms such as sequential quadratic programming (SQP) use the derivative 

information to find the local minima and they do not search the entire design space to find the 

global minimum [4]. Hence, derivative-free algorithms, such as genetic algorithm (GA) and 

particle swarm optimization (PSO) are more suitable to address the issues of a noisy and 

discontinuous objective function like the HEV drivetrain [5]. These derivative-free methods 

usually sample a large portion of the design space to find a global solution. Population based 

stochastic optimization methods such as the GA and PSO are initialized with a population of 

random solutions and the optimum is determined by updating generations. PSO has some 

advantages over GA such as it has no evolution operators like crossover and mutation [6]. In 

PSO, the potential solutions, called particles, fly through the problem space by following the 

current optimum particles.  

 

In this project, optimization of the HEV control system parameters to improve fuel economy 

will be evaluated by implementing particle swarm optimization (PSO) and genetic algorithm 

(GA) optimization. These algorithms will consider drivetrain components and control strategy 

parameters as design objectives, and vehicle performance parameters as constraints. 

 

3. Methodology 

The HEV will be modeled utilizing a software in the loop (SIL) model created using Matlab. The 

SIL environment uses soft electronic control units (soft-ECUs) to simulate the controls logic 

which interacts with plant models representing the major vehicle powertrain systems, driver, 

and environment. The focus of this project will be on optimizing energy management control 

parameters which are responsible for conveying the maximum available power from the 

battery, maintaining SOC, and ensuring safe vehicle operation.  

 



 

∫T|y1(t)| dt 
0 Fc( r,u ) = 

 ∫T|y2(t)| dt 
0 

As outlined in the problem description maintaining charge sustaining operation is accomplished 

through regenerative braking or by utilizing power from the engine through cruise charging. 

The functionality of this strategy relies on the effective selection of several parameters 

including the target SOC, maximum electrical accessory power, power required to maintain SOC 

(Psoc) offset, and maximum cruise charge (CC) power. These values must be derived from 

modeling and real world testing to enable charge sustaining operation under all conditions. This 

compromise creates an opportunity to optimize the parameters based on the current vehicle 

operating conditions to reduce the amount of fuel used and improve vehicle performance. 

Within the optimization algorithm simulation iterations the control input values will be 

evaluated using metaheuristic techniques to maximize fuel efficiency. Contributing operating 

parameters are listed below in Table 1, and the function used to evaluate fuel efficiency, Fc, is 

defined as Equation 1. 

Where r = the reference input, u = the control input, and y represents the model outputs. 

 

 

 

 

 
 

Table 1: Reference Input, control input, and output of the system 

Variable Description 

r1 Target vehicle speed (km/h) 

u1 Target SOC (%) 

u2 AccELec maximum power (W) 

u3 Psoc offset (%) 

u4 Cruise Charge maximum power (W) 

y1 Actual vehicle speed (km/h) 

y2 Instantaneous fuel consumption (L) 

 

 

The particle swarm optimization algorithm is governed by the following equations and 

variables. There are 𝑁 particles each with 𝐴 parameters. The position of these particles, 𝑝, is an 

𝐴 𝑥 𝑁 matrix. We represent the velocity, 𝑣, of all the particles with an 𝐴 𝑥 𝑁 matrix as well. 

There are four empirically determined weights, 𝑤1 =  0.3, 𝑤2 = 0.5, 𝑤3 = 0.4, and 𝑤4 = 1.5. 

The first weight applies to inertia, the second to the global best difference, the third to the 

personal best difference, and the fourth to a randomized value. The algorithm also uses the 

global best solution, 𝑔𝑏𝑒𝑠𝑡, and personal best, 𝑝𝑏𝑒𝑠𝑡, parameters of each particle. 𝑝𝑏𝑒𝑠𝑡 is an 

𝐴 𝑥 𝑁 matrix of all the particles best solutions, and 𝑔𝑏𝑒𝑠𝑡 is an 𝐴 𝑥 1 matrix as it only 

Equation 1 
 



represents the best solution for one particle. The algorithm runs through 𝑡𝑒𝑛𝑑 iterations where 

𝑡 is the current iteration. It also utilizes an 𝐴 𝑥 2 matrix, 𝑟𝑎𝑛𝑔𝑒𝑠, which represent the potential 

range of each parameter. Utilizing a random number 𝑅 uniformly chosen in [0,1], we calculate 

the starting population randomly. 

 

𝑝𝑖,𝑗  =  𝑅 ∗ (𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2 − 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1)  + 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1 Equation 1 

 

A detailed description of the optimization algorithm follows. 

Begin iteration one (𝑡 = 1): 

For each iteration, evaluate the model using given parameters for each particle 𝑗 (column in 𝑝). 

If the solution for the particle is better than its personal best (which we remembered for 

efficiency), we will store that column in the appropriate column 𝑗 of 𝑝𝑏𝑒𝑠𝑡. We will calculate 

velocity using the following formula: 

𝑔𝑏𝑒𝑠𝑡𝑚 =  [𝑔𝑏𝑒𝑠𝑡 | 𝑔𝑏𝑒𝑠𝑡 |  … | 𝑔𝑏𝑒𝑠𝑡] Equation 3 

                                        (𝑔𝑏𝑒𝑠𝑡 augmented with itself 𝑁 times)                      

 

Let 𝑅𝑚 be a matrix 𝐴 𝑥 𝑁 which is comprised of random numbers [0,1].  

𝑣 =  𝑤1 ∗ 𝑣 +  𝑤2 ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑝)  +  𝑤3 ∗ (𝑔𝑏𝑒𝑠𝑡𝑚 − 𝑝) +  𝑤4 ∗ (𝑅𝑚 ∗ 2 − 1) Equation 4 

 

Next, apply the velocity to 𝑝: 

𝑝 =  𝑝 +  𝑣; Equation 5 

 

Apply boundaries:   

𝑝𝑖𝑗 =  {

𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1   𝑖𝑓 𝑝𝑖,𝑗 < 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,1

𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2   𝑖𝑓 𝑝𝑖,𝑗 > 𝑟𝑎𝑛𝑔𝑒𝑠𝑗,2

𝑝𝑖,𝑗              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 6 

 

Begin the next iteration until 𝑡𝑒𝑛𝑑 iterations have occurred. Increment 𝑡 and repeat the same 

process if 𝑡 ≤ 𝑡𝑒𝑛𝑑.  

 

The genetic algorithm utilizes the mechanisms of mutation and crossover, using methodology 

from Ref. [7] with significant modification to fit the problem. It iterates for 𝐺 generations with a 

empirical mutation rate 𝑃𝑚 = 0.033 and a crossover rate 𝑃𝑐 = 0.6. The population is created 

randomly from within given ranges, just like the PSO. Each individual in the algorithm has 𝐿 

genes, each of which is a floating point number.  

 

The algorithm begins by computing the fitness, or value of the objective function, for all 𝑁 

individuals in the population. 𝑁 is constrained 𝑁 𝑚𝑜𝑑 2 = 0. Fitness is recorded in a vector of 



length 𝑁. Evaluating fitness can be parallelized to improve algorithm speed. Following the 

fitness evaluation, we then check the population for a new best fitness, and record population 

statistics.  

 

Next, the subsequent population of the algorithm is created. We start by creating a new vector 

for fitness by normalizing it with respect to its sum: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝐹𝑖𝑡𝑛𝑒𝑠𝑠

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠
 Equation 7 

Thus,      ∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1 Equation 8 

 

 

Next, we create a running average from these values. This is a vector of size 𝑁 as well. The 

value of element 𝑖 in this vector is equivalent to the sum of the previous elements plus the 𝑖th 

element of 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠. Thus, the last value of the running average is 1. 

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑖 = ∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑛

𝑖

𝑛=1

 Equation 9 

 

 

Next, two random numbers, 𝑖1 and 𝑖2 are selected to enable selection of parents for the 

algorithm based on the running average. We select the parents based on the running average. 

The parent 1 or 2 selected is the highest index 𝑛 where 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑛 <  𝑖1 𝑜𝑟 2. Higher 

fitness parents are more likely to be selected. If the second parent is identical to the first, we 

use a heuristic of selecting the next individual in case there is only one high fitness member of 

the population.   

 

To increase the effectiveness of this procedure, we shift the fitness value down by 23 

(determined empirically) to cause higher fitness parents to have an increased chance of 

procreation. This is because the approach used for selecting parents involves normalizing the 

values. All fitness values remain greater than zero. 

 

We create two offspring 𝑜1 and 𝑜2 as copies of each parent individual. Next, we create a 

random number within [0,1]. If this random number is less than the probability of crossover, 𝑃𝑐, 

then we uniformly select a random integer 𝑎 =  [1, 𝐿]. We use this as a single inflection point 

and switch all genes (parameter values) in 𝑜1 and 𝑜2 after (and including) this point 𝑎.  

 

Subsequently, the algorithm loops through all genes individually in both children. We mutate 

each gene to a random number in the correct range with a probability 𝑃𝑚. We add the two 



children to our population and repeat the process until the new population is size 𝑁. We repeat 

this procedure for 𝐺 iterations. 

 

In addition, we also implemented elitism into a version of the genetic algorithm. This 

implementation involves copying a small proportion of the fittest candidates, unchanged, into 

the next generation. This was done with two elites, so then only 
𝑁

2
− 2 children are created. The 

two elites join the new population without any changes. This will hopefully prevent the 

population from regressing to lower fitness levels while still retaining benefits of the algorithm.  

4. Results and Discussion 

For this project a modified SIL model was developed which allows the optimization function to 

update parameters, shown in Table 1, programmatically. Real world driving data, ~1600 miles, 

was utilized to validate the software in the loop (SIL) model against the real world vehicle 

performance. At each iteration the fuel economy and electrical energy consumption of the 

vehicle is evaluated.  
 

Table 2: Control Input parameters for optimizing Vehicle Fuel Economy Min Max 

b1 Target SOC (%) Target_SOC 40 80 

b2 Accessory Electrical maximum power (W) AccElec 300 900 

b3 Psoc offset Psoc_Offset 1 20 

b4 Cruise Charge Max Power (W) CC_Upper 5000 15000 

 

To evaluate performance of the vehicle and optimization method simulation has been 

conducted over a standard set of drive cycles, four EPA US06 or Supplemental Federal Test 

Procedure drive cycles as shown in Figure 2, for the baseline and optimized parameter values 

resulting from the optimization methods. This set of cycles represents 40 minutes and 32 miles 

of driving with an average speed of just over 48 miles per hour (MPH). 



Baseline parameter values were identified through trial and error controls prototyping, and 

adjusted based on real-world driving. The baseline model will be run over 10 sets of cycles 

representing 320 miles and over 6 hours of driving, resulting in a baseline fuel economy of 

32.58 miles per gallon (MPG). The results from the 10 simulations will then be used to compare 

against the “optimal” solution generated by the algorithm.  

 
4.1 Particle Swarm Optimization Results 

To investigate the efficacy of the PSO algorithm simulations were run with varying numbers of 

particles, from ten to one hundred in increments of ten. The results of all PSO simulations are 

summarized in Table 3, and Figure 2 depicts the 20 particle, P20, simulation results. Figures 

depicting the results of all the remaining PSO simulations are included in the appendix for your 

reference.  

 

The data clearly illustrates that a larger number of particles does not necessarily indicate a 

better result. The parameter values are also similar over the range of particle numbers, with the 

exception of the cruise charge value for the 20 particle simulation.  
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Table 3: PSO Simulation Results 

  Iteration Max MPG AccElec (W) CruiseCharge(W) PsocOffset TargetSOC 

P10 29 34.92 711 10732 5.19 40% 

P20 49 34.93 682 7001 5.68 40% 

P30 188 34.92 741 11556 2.74 40% 

P40 377 34.91 531 10915 3.87 40% 

P50 417 34.91 598 11189 2.27 40% 

P60 349 34.9 737 12451 6.77 40% 

P70 326 34.92 557 10955 5.55 40% 

P80 448 34.91 773 10321 6.71 40% 

P90 431 34.92 623 8907 2.75 40% 

P100 908 34.91 485 11364 4.62 40% 

 

 
Figure 3: PSO Simulation results, 20 particles over 10 iterations 

The results displayed in Figure 2 allow us to propose several conclusions. First the oscillatory 

nature of the simulated fuel economy suggests that the solution space contains multiple local 

maximums. Due to the shape of the solution space multiple similar local optimums occur which 

are close to the global maximum, which allows for a smaller number of particles to converge to 
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a local maximum. These local optimums, and similar points, exist for several different 

configurations of parameters which offer multiple solutions for optimizing fuel economy and 

reducing emissions. In addition the Cruise Charge and Psoc Offset parameters appear to 

converge to optimal values as the simulation proceeds confirming visually the functionality of 

the algorithm.   

The particle swarm optimized fuel economy reached a maximum value of 34.93 MPG after 49 

iterations. This is a 6.7% improvement over the baseline simulated fuel economy value of 32.58 

MPG. 

4.2 Genetic Algorithm Optimization Results 

In a manner similar to the approach taken with the PSO algorithm the GA optimization 

simulations were run over a range of generation values as shown in Table 4. The performance 

of the GA approaches the maximum fuel economy result from the PSO with similar parameter 

values.  
Table 4: Genetic Algorithm Simulation Results 

Genetic Algorithm Optimization on 4 x US06 Drive Cycle 

  Iteration Max MPG AccElec (W) CruiseCharge(W) PsocOffset TargetSOC 

G20 249 34.84 432 12749 5 40% 

G40 125 34.86 525 13086 4 40% 

G80 787 34.79 846 13547 9 40% 

G100 144 34.78 725 8500 7.3 40% 

Similar to the PSO, the simulations with a smaller number of generations seem to perform 

better due to a large number of local maximums within the solution space. In contrast to the 

PSO results shown in Figure 2, the GA results do not depict convergence of the parameters 

towards an optimal value, as shown in Figure 3. The maximum fuel economy result from the GA 
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Figure 4: Genetic Algorithm Results for 20 generations 



represents a 6.5% improvement over the baseline of 32.58 MPG.  

As the GA did not reach or exceed the results of the PSO algorithm a modified GA was 

implemented utilizing an elitism selection method which copies a small proportion of the fittest 

candidates unchanged into the next generation. This Elitism GA, (EGA), was then applied to the 

20 generation case to further explore the solution space for maximal values of fuel economy 

that meet or exceed the results of the PSO. Figure 4 represents EGA results which exceed the 

maximum fuel economy found by the PSO and GA. This maximum of 35.17 MPG represents a 

7.4% increase over the baseline fuel economy of 32.58 MPG. 

 

Figure 5: Elitism Genetic Algorithm Simulation Results 

Additionally the PsocOffset and Cruise Charge parameters appear to converge to an optimal 

value as the simulation progresses, in a similar manner to the PSO results. Therefore the EGA 

method has proven to be optimal for exploring this solution space as it reached what is 

assumed to be the global maximum, exceeding the maximum reached by the PSO, and provides 

some semblance of convergence for the parameters.  
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5. Conclusion 

In this project, population based stochastic optimization techniques such as particle swarm 

optimization (PSO) and genetic algorithm (GA) have been implemented to derive optimized 

parameters for the battery management system of a HEV. The intent of the algorithms is to 

optimize the HEV energy management parameters on the operating conditions of the vehicle to 

achieve minimal fuel consumption.  

Results from simulations totaling over 340,000 miles show that both of these optimization 

techniques can provide significant improvement in vehicle control system optimization over 

conventional controls prototyping methods. Based on the results presented, the GA and PSO 

simulations with a smaller number of generations or particles respectively seem to perform 

better due to a large number of local maximums within the solution space that are close to the 

global maximum. Therefore the EGA method has proven to be optimal for exploring this 

solution space as it reached what is assumed to be the global maximum, exceeding the 

maximums reached by the GA and PSO, as well as providing some semblance of convergence 

for the parameters.  

In addition, the developed methodology can provide a firm selection platform for components 

and parameters to efficiently handle the complex task of HEV system design which contains 

numerous local minima, discontinuous objective functions and nonlinear constraints.  

In the future, this work will be formulated into an abstract for submission to the Society of 

Automotive Engineers for presentation at the upcoming International Powertrains, Fuels and 

Lubricants Meeting under the general powertrain development section which features a 

session on control system design and calibration. More immediately this work will be combined 

with tangential work to improve the SIL plant model fidelity and presented at the EcoCAR 3 

competition May 18-19 as part of the MathWorks Modeling Award event.  
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Appendix of Code 
Genetic Algorithm Code 
function finalp = GeneticAlgorithm_1_eliticism() 
  

%Test function 

f= @(x) cos(x(1))+sin(x(2))+cos(x(3))+sin(x(4))+cos(x(5)) + ... 

    sin(x(1)+x(2)); %the best so far is [37.7399   89.4826  546.6246    1.6254   56.7295] 
  

L=4; %number of genes 

N=20; %population size, make this even 

G=20;%number of generations 15:100 

pm=.033;%probability of mutation 

pc=.6;%probability of crossover 
  

eliteNum=2; 
  

%Parameter ranges (smallest value then largest, this is a Lx2 matrix. 

ranges=[300,900; 

        1,20; 

        .40,.80; 

        5000,15000; 

        ]; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

pop=zeros(N,L); %population 

pop=init(pop,ranges); %initialize population 
  
  

gbest=zeros(L,1); %global best parameters 

gbestVal=0; %global best val 
  
  

 fprintf('     MPG            AccElec         PsocOffset     TargetSOC      CruiseCharge\n');       %[labels 

for values] 
  

%Remember fitness 

fitness=zeros(1,N); 

fitness_norm=zeros(1,N); 
  

%Stats: 

totalFitness_s=zeros(G,1); 

averageFitness_s=zeros(G,1); 

bestFitness_s=zeros(G,1); 
  
  
  

%Generation loop 

for g=1:G 
  

    %Calculate fitness. -23 increases algorithm performance. 

    parfor j=1:N 

        fitness(j)=F(pop(j,:))-23; 

    end 
     

    %Go through fitnesses and test for new best value. This is done in  

    %a seperate for loop to allow parallelization of the algorithm. 

    for j=1:N 

        if (fitness(j)>gbestVal) 

            gbest=pop(j,:); 

            gbestVal=fitness(j); 

        end 

    end 
     

    %Normalize the fitnesses so that the sum is 1 

    totalFitness=sum(fitness); 

    fitness_norm=fitness/totalFitness; 
         

    %fprintf("G: %d, F=%f\n",g,totalFitness); 
     

    %Record stats at iteration g 

    totalFitness_s(g)=totalFitness; 

    averageFitness_s(g)=mean(fitness); 

    bestFitness_s(g)=max(fitness); 
  

    %Generate running total for parent selection later. 

    %This allows us to use a rand() in order to select parents randomly, 

    %but weighted towards better fitnesses. Randomness is important for  

    %the function of the algorithm. The following for loop creates the  

    %running total using the already normalized fitness values.  

    running_total=zeros(1,N); 

    running_total(1)=fitness_norm(1); 



    for j=2:N 

        running_total(j)=fitness_norm(j)+running_total(j-1); 

    end 
     
  

    %Change population 

    newPop=zeros(N,L); 

    %This is done N/2 times because you get two children each time. 

    %Thus, you get a population of size N again. Note, constrain N with 

    % N mod 2 = 0, N > eliteNum 
     

    %This requires eliteNum==2 

    [tmp,tmp2]=sort(fitness); 

    elite1=pop(tmp2(end),:); 

    elite2=pop(tmp2(end-1),:); 
     

    for j=1:N/2 - eliteNum/2 

        %Select two parents p1,p2 using two random values i1,i2 

        i1=rand(); 

        p1=-1; 

        i2=rand(); 

        p2=-1; 

  

        %Use our random value to select a parent. This is weighted based 

        %on the porportion of fitness values. 

        for k=1:N 

            if (p1==-1 && i1<running_total(k)) 

                p1=k; 

            end 

        end 
  

        %Select parent 2 the same way, but ignore duplicates. 

        while (p2==-1 || p2==p1) %we haven't run or they are the same 

            for k=1:N %I use a second loop so this can repeat 

                if (i2<running_total(k)) 

                    p2=k; 

                    if (k==p1 && p1~=N) %Quick way of ignoring duplicate 

                        p2=k+1; 

                    else 

                        p2=k; 

                    end 

                    break; 

                end 

            end 

            if (p2==p1)%if statement is not needed, but is more clear 

                i2=rand(); %We need to try a new random parent 

            end 

        end 
         

        %Create offspring - initially 

        o1=pop(p1,:); 

        o2=pop(p2,:); 
  

        %Cross them over - I pick a random index and flip all the genes 

        %in the two children after that happens 

        if (rand()<pc)%Check if it occurs 

            point=randi(L); 

            tmp=o1(point:L); 

            o1(point:L)=o2(point:L); 

            o2(point:L)=tmp; 

        end 
  

        %Mutate offspring - each gene in each offspring has a pm chance of  

        %being mutated to something uniformly random in its desired range. 

        for k=1:L %offspring 1 

            if (rand()<pm) 

                o1(k)=rand()*(ranges(k,2)-ranges(k,1))+ranges(k,1); 

            end 

        end 

        for k=1:L %offspring 2 

            if (rand()<pm) 

                o2(k)=rand()*(ranges(k,2)-ranges(k,1))+ranges(k,1); 

            end 

        end 

        %Put the children in the new population 

        newPop(2*j-1,:)=o1; 

        newPop(2*j,:)=o2; 

    end 

    %assume eliteNum == 2 

    newPop(end,:)=elite2; 

    newPop(end-1,:)=elite1; 

    pop=newPop; 
     



     

    %Bounderies - this shouldn't be an issue on a GA, but we'll check 

    %anyway 

    pop=bound(pop, ranges); 
     

end 
  

finalp=gbest; 

fprintf('%f\n', gbestVal); 
  
  

figure(1); 

plot(1:G,totalFitness_s); 

title('Total Fitness'); 

figure(2); 

plot(1:G,averageFitness_s); 

title('Average Fitness'); 

figure(3); 

plot(1:G,bestFitness_s); 

title('Best Fitness'); 

figure(4); 

plot(1:N,sort(fitness)); 

title('Population Fitness'); 
  

end 
  
  

%Put points outside the boundery back into the boundery 

function p = bound(p, ranges) 
  

[pnum]=size(p); 

pnum=pnum(1); 

[par] = size(ranges); 

par=par(1); 
  

for i=1:pnum 

    for j=1:par %ranges 

        if (p(i,j)<ranges(j,1)); p(i,j)=ranges(j,1); end 

        if (p(i,j)>ranges(j,2)); p(i,j)=ranges(j,2); end 

    end 
     

end 

  

end 

  

%Initialize uniformly randomly from desired ranges 

function p = init(p, ranges) 
  

[pnum]=size(p); 

pnum=pnum(1); 

[par] = size(ranges); 

par=par(1); 
  

for i=1:pnum 

    for j=1:par %ranges 

        p(i,j)=rand()*(ranges(j,2)-ranges(j,1))+ranges(j,1); 

    end 

end 
  

end 
 

Fuel Economy Function Code 
function fuel_mileage_mpg = F(x) 

  

%Get fuel consumption and distance 

%drive_cycle_distance_m = evalin('base', 'sch_metadata.distance.value'); 

evalin('base', 'load(''wtf.mat'')'); 

  

evalin('base', sprintf('accelec.plant.init.pwr=%d;',x(1))); 

evalin('base', sprintf('vpc.prop.init.emcp_psoc_table_offset=%d;',x(2))); 

assignin('base', 'Target_SOC',x(3)); 

assignin('base', 'CC_Upper',x(4)); 

  

%assignin('base', 'BPP_Regen_Max',x(1)); 

%assignin('base', 'OffThrottleRegen_Max',x(2)); 

%assignin('base', 'Psoc_Upper',x(5)); 

%assignin('base', 'Psoc_Lower',x(6)); 

  

%For structs use this format 

  

  

warning off; 

  



    simOut = sim('Camaro_SIL','SimulationMode','Accelerator'); 

    %set_param('Camaro_SIL','SimulationCommand','update'); 

         

FC = max(simOut.get('eng_plant_fuel_cum_simu')); 

%Dist = evalin('base','sch_metadata.distance.value'); 

V = trapz(simOut.get('ess_plant_volt_out_simu')); 

I = trapz(simOut.get('ess_plant_curr_out_simu')); 

D = trapz(simOut.get('chas_plant_lin_spd_out_simu')); 

Dx = D*0.0000621371; 

    fuel_mileage_mpg = Dx/FC; 

    PElec = V*I; 

  

    fprintf(' %e     %e        %4.2f        %4.2f        %4.2f        %4.2f        %4.2f        

%4.2f\n',fuel_mileage_mpg,PElec,x(1),x(2),x(3),x(4),x(5),x(6)); 

    

    %disp(max(evalin('base','eng_plant_fuel_cum_simu'))); 

    %disp(max(evalin('base','BPP_Regen_Max'))); 

          

end 

 

Particle Swarm Code 
 
function finalp = ParticleSwarm() 

 ms = MultiStart('UseParallel',true); 

 pctRunOnAll('addpath C:\Users\campbellru\Documents\MATLAB\PSO_04112018') 

%Function 

%f= @(x) ((cos(x(1)./4) + sin(x(2)))./((x(1).^2+x(2).^2).^.25)).*sin(x(1).*x(2)/10) + ... 

%    ((cos(x(3)./4) + sin(x(4)))./((x(3).^2+x(4).^2).^.25)).*sin(x(3).*x(4)/10) + ... 

%    sin(x(5)); 

  

f= @(x) cos(x(1))+sin(x(2))+cos(x(3))+sin(x(4))+cos(x(5)) + ... 

    sin(x(1)+x(2)); 

  

par=4; 

pNumber=60; 

  

tend=10; 

  

  

%weights 

%inertia, gbest, pbest, rand 

w=[.3,.5,.4, 1.5]; 

  

%Weights on individual velocities 

%v_weights=[1,1,100,1,1]; 

  

ranges=[300,900; 

        1,20; 

        .40,.80; 

        5000,15000; 

        ]; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

p=zeros(pNumber,par); %particles (position) 

p=init(p,ranges);  

solu=zeros(pNumber,1); %Remember solution 

v=zeros(pNumber,par); %velocity 

  

best=zeros(pNumber,1); %Remember value of personal best 

bestp=p; %Remember coordinates of personal best 

gbest=0; %global best index 

gbestVal=0; %global best val 

  

  

%Initialize 

    fprintf('     MPG            PElec      Psoc_Upper     Psoc_Lower     CruiseCharge     PsocOffset         

TargetSOC\n');        %[labels for values] 

  

for i=1:tend 

     

    parfor j=1:pNumber 

        rv = F(p(j,:)); %This is where the optimized function is called 

        solu(j)=rv; 

        if rv > best(j) 

            best(j) = rv; 

            bestp(j,:)=p(j,:); 

        end 

    end 

     



    [gbestVal, gbest]=max(best); 

     

    %Find velocity 

    %w1*intertia + w2 * globalBestDifference + w3 * personal Best distance 

    v= w(1)*v + w(2)*(bestp-p) + w(3)*(repmat(bestp(gbest,:),pNumber,1)-p) +w(4)*(rand(pNumber,par).*2-1); 

    %note that rand is [0,1] so it is changed to [-1,1]=[0,1]*2-1 

     

     

    %Scale to 1 

    %v=sqrt(particle(:,6).^2+particle(:,7).^2); 

    %v=v+.01; %avoid divide by 0 hack 

    %particle(:,6)=2.*particle(:,6)./v; 

    %particle(:,7)=2.*particle(:,7)./v; 

  

    %v=v.*v_weights; 

     

    disp(i); 

    %disp(v); 

     

    %Add velocity 

    p=p+v; 

     

    %Bounderies 

    p=bound(p, ranges); 

     

    %quantize 

     

    %bounds 

     

end 

  

finalp=bestp(gbest,:); 

disp(finalp); 

%disp(best); 

fprintf('%i  %f\n',gbest, gbestVal); 

  

  

end 

  

  

function p = bound(p, ranges) 

  

[pnum]=size(p); 

pnum=pnum(1); 

[par] = size(ranges); 

par=par(1); 

  

for i=1:pnum 

    for j=1:par %ranges 

        if (p(i,j)<ranges(j,1)); p(i,j)=ranges(j,1); end 

        if (p(i,j)>ranges(j,2)); p(i,j)=ranges(j,2); end 

    end 

     

end 

  

end 

  

function p = init(p, ranges) 

  

[pnum]=size(p); 

pnum=pnum(1); 

[par] = size(ranges); 

par=par(1); 

  

for i=1:pnum 

    for j=1:par %ranges 

        p(i,j)=rand()*(ranges(j,2)-ranges(j,1))+ranges(j,1); 

    end 

end 

  

end 

 


