
Avoiding Catastrophic Forgetting in Safety Gridworld
ECE 517: Reinforcement Learning

Final Project Report

Carl Edwards
cedwar45@utk.edu

Brandon Mathis
bmathis3@vols.utk.edu

December 8 2019

1. Introduction

The premise of this project is to learn multiple tasks
using a single agent without significantly hindering
performance on the previously learned tasks. The task
environments used for this will be AI Safety Grid-
world [1] inspired environments that we have devel-
oped. These environments seek to illustrate various
safety properties of agents. They provide several dif-
ferent distinct tasks for us to train our agents on.

We then apply elastic weight consolidation (EWC)
[2] to a deep Q-network (DQN) [3] agent in these en-
vironments to attempt to learn multiple tasks at once
without learning them in parallel. The primary goal
is to test whether using EWC can avoid the catas-
trophic forgetting of the agent on previously learned
tasks. This differs from the work of [2], as they ap-
ply EWC to the classic Atari reinforcement learning
environments and do not focus on the robustness and
safety of the agents like in [1].

2. Previous Works

In this section, we discuss previous works related to
catastrophic forgetting in reinforcement learning and
safety properties in intelligent agents.

2.1. Catastrophic Forgetting in Reinforcement
Learning

Catastrophic forgetting in reinforcement learning
occurs when multiple tasks are attempting to be
learned at the same time. In the work by [2], the au-
thors attempt to overcome this problem by introduc-
ing EWC. A general depiction of the method can be
seen in Figure 1. This idea was based on the idea of
synaptic consolidation in the brain, which allows con-
tinual learning by reducing the plasticity of synapses
that are needed for tasks that have been previously
learned. The authors apply this approach in 2 exper-
iments: MNIST and Atari. Improvements in perfor-
mance are seen when using stochastic gradient descent
(SGD) with EWC to remember older tasks over using
SGD without EWC.

In [4], they consider EWC along with other catas-
trophic forgetting prevention techniques and come to
the conclusion that the type of data plays an important
role in how well the techniques function. They con-
clude “that the catastrophic forgetting problem has yet

Figure 1. EWC explanation from [2]. The blue arrow repre-
sents minimizing the loss of task B while forgetting task A,
the green arrow represents constraining the weights with the
same coefficient which results in only remember task A, and
the red arrow represents EWC which learns by computing
how important the weights are for task A and remembering
that when learning task B.

to be solved.” This further highlights the need for test-
ing of these methods in more robust environments.

2.2. Safety Properties in Intelligent Agents

With the increasing use of intelligent agents, safety
has become an area that needs substantial considera-
tion. [1] focus on this issue by developing a suite of
reinforcement learning environments that demonstrate
a number of safety properties. The properties specified
in their work were:

- Safe interruptibility - an agent’s actions should be
able to be stopped at any time.

- Avoiding side effects - an agent should minimize
the impact it has that are not related to its main
objective.

- Absent supervisor - an agent should perform the
same whether there is a supervisor present or not.

- Reward gaming - an agent should not try to ex-
ploit errors in a reward function.

- Self-modification - an agent should perform well
in environments that allow for self-modification.

- Distributional shift - an agent should be robust to
testing environments differing from training envi-
ronments.

- Robustness to adversaries - an agent should be
able to adapt to friendly or adversarial interac-
tions in an environment.

1

- Safe exploration - an agent should respect safety
constraints.

An example environment, Lava World which demon-
strates distributional shift, from their work can be seen
in Figure 2.

Figure 2. Sample distributional shift environment from [1].
The training environment is shown on the left and the test-
ing environment is shown on the right.

In their work, they test these environments us-
ing the reinforcement learning agents advantage actor
critic (A2C), which is a synchronous version of asyn-
chronous advantage actor critic (A3C), and Rainbow,
which is an extension of DQN that combines several
improvements into one network. The results of these
methods on the distributional shift environment can be
seen in Figure 3 (which we refer to as Lava World).
The use of these more advanced reinforcement learn-
ing methods over normal methods like DQNs alludes
to the difficulty of these environments.

Figure 3. Results from [1] on their distributional shift envi-
ronment using Rainbow, in blue, and A2C, in orange.

3. Problem

In this section, we describe the problem we are at-
tempting to solve, the limitations encountered in

Figure 4. The 3 Lava World environment layouts used,
based on the distributional shift environment from [1]. a)
Lava World 0. b) Lava World 1. c) Lava World 2.

preliminary tests, and how the problem was framed as
a Markov decision process (MDP).

3.1. Problem Description

The main task of the problem at hand is for an agent
to navigate from a starting position in a grid, to a goal
somewhere else in the grid. After preliminary testing,
it was identified that the grids from [1] were too large
to learn in a reasonable period of time and even with-
out the time consideration, learning was not successful
with the proposed approach. The results of this pre-
liminary testing are discussed further in Section 6.1.
To overcome this limitation, we developed our own
environment based on the environments in [1], with
reduced dimensions.

The first of these is the Lava World environment,
which is based on the distributional shift environment
from [1]. There are 3 layouts of this environment that
were defined, 1 for training and 2 for testing. In terms
of EWC, the training layout is the task A layout and
the testing layouts are task B layouts. These layouts
can be seen in Figure 4. The goal of this environment
is to get the agent to move to the goal while avoiding

2

the lava. In terms of the multiple layouts, this envi-
ronment seeks to test the performance of the agent in
different grid layouts where the lava and the goal may
be in positions that are different from the initial train-
ing.

The other environment used is the Interrupt World
environment, which is based on the safe interruptibil-
ity environment from [1]. This environment can be
seen in Figure 5. The goal of this environment is to
get an agent to reach the goal by always trying to go
through the interrupt block without first going to the
button space. In this situation, the button is used to
disable the interrupt block which represents the agent
overriding a user interrupt. This represents an un-
wanted behavior in an agent because an agent should
not be able to prevent user interruption from occurring
if it is deemed necessary by the user.

Figure 5. The Interrupt World environment used, based on
the safe interruptibility environment from [1].

3.2. Framing as an MDP

In order to frame this problem as an MDP, we spec-
ify the set of states, actions, and rewards in the follow-
ing.

3.2.1 States

In this problem, states are defined as three dimen-
sional grids where the third dimension is the object
in that grid defined using one-hot encoding. More
specifically, these grids are height × width × num-
ber of objects, which results in a grid of 4 × 4 × 7.
The 7 possible objects are agent, path, goal, wall, lava,
button, and interruption, which are all objects from [1].

3.2.2 Actions

In this problem, we specify four possible actions for
the agent, up, down, left, right, which are the same
actions available in [1]. Here, up results in the agent
moving -1 in the y direction, down results in the agent
moving +1 in the y direction, left results in the agent
moving -1 in the x direction, and right results in the
agent moving +1 in the x direction.

3.2.3 Rewards

In this problem, a simple reward structure is used. A
reward of 30 is given to the agent for reaching the goal.
A reward of -30 is given to the agent for either moving
into the lava or for moving into the interrupt space and
getting interrupted. For every other move, the agent is
given a reward of -5.

4. Reinforcement Learning Methods

In this section, we describe the reinforcement learn-
ing method used to solve the problem described in Sec-
tion 3.

4.1. Deep Q-Network

In this work, we utilize a DQN [3] as our reinforce-
ment learning method. For this DQN we make use of
the Adam optimizer [5] and EWC, each of which is
described in the following sections.

4.2. Adam

SGD is a common approach when training networks
for deep learning. This is mainly because it is rela-
tively simple to implement and is computationally ef-
ficient. According to [6], however, SGD also suffers
from a number of disadvantages. The authors high-
light that manual parameter tuning and the sequential
nature of SGDs are the more prominent of these dis-
advantages. This is because parameter tuning can be a
long process if the search space for the parameters is
large or the optimization procedure is computationally
expensive.

The general approach for SGD is to take a single
example at each iteration, then find the gradient of the
objective function for that example. This introduces
randomness that is often expected when working with

3

deep learning methods. Mathematically an SGD up-
date is represented as:

w ← w − η∇Qi(w) (1)

Adam is an extension of SGD introduced by [5].
The primary benefits of this optimizer are that it can
handle large amounts of data and it often requires min-
imal tuning of parameters. Because there is minimal
tuning required for this optimizer and because of the
benefits that it maintains from SGD, we have chosen
to use Adam as our optimizer for this project. The
algorithm for Adam defined in [5] can be seen in Al-
gorithm 1.

Algorithm 1 Adam
1: Initialize α
2: Initialize β1, β2 ∈ [0, 1): Exponential decay rates
3: f(θ): Stochastic objective function
4: θ0: Initial parameter vector
5: m0 ← 0: Initialize 1st moment vector
6: v0 ← 0: Initialize 2nd moment vector
7: t← 0: Initialize timestep
8: while θt not converged do
9: t← t+ 1

10: gt ← ∇θft(θt−1)
11: mt ← β1mt−1 + (1− β1)gt
12: vt ← β2vt−1 + (1− β2)g2

t

13: m̂t ← mt/(1− βt1)
14: v̂t ← vt/(1− βt2)
15: θt ← θt−1 − αm̂t/(

√
v̂t + ε)

16: Return θt

4.3. Elastic Weight Consolidation

EWC is a method introduced by [2]. The main goal
of this method is to allow networks to be able to learn
tasks sequentially while also maintaining the ability to
perform earlier tasks. According to [2], the problem
of forgetting earlier tasks is known as catastrophic for-
getting and is a feature that is inevitable to these kind
of models.

The general idea of this method is to selectively
slow learning on weights that are important for earlier
tasks. This helps to maintain information that has pre-
viously been learned by performing these earlier tasks,
while not prohibiting learning of a new task. Mathe-

matically, the goal is to minimize

L(θ) = LB(θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)2 (2)

where LB(θ) is the loss for task B, λ defines the im-
portance of one task over the other, and i labels each
parameter. Fi is the diagonal entry in the fisher infor-
mation matrix of the parameter i. θi is the model’s
current parameters and θ∗A,i are the parameters for the
solution to task A.

4.4. Fisher Information Matrix

Fisher information tells how much information we
can expect to get from a random variableX about a pa-
rameter Θ which models X; it has the following uses:
[7]

• Describing the asymptotic behavior of maximum
likelihood estimates.

• Calculating the variance of an estimator.

• Finding priors in Bayesian inference.

An approximation known as the empirical Fisher in-
formation matrix has been used in several prominent
recent works to capture second-order information [8].
In fact, the Adam optimizer we use for our model takes
advantage of this, and works such as [2] refer to this
empirical Fisher as Fisher [8].
The Fisher IΘ is defined as follows [9]:

IΘ = E [∇Θlog(pΘ(X))∇Θlog(pΘ(X))T]

where pΘ is the density function for some distribution.
Given suitable smoothness conditions for pΘ, it can
also be defined in terms of the Hessian as follows:

IΘ = −E [∇2log(pΘ(X))]

In EWC, the Fisher information is used to approxi-
mate the posterior p(Θ|Da) of task A’s data as a Gaus-
sian distribution. In this case, we use the likelihood
pΘ(X) as the loss of our task LA. Only the diagonal is
used, which can be computed as the elementwise prod-
uct of the gradient with itself. This makes the compu-
tation of second-order information efficient, which is
one reason that the Fisher matrix is often used to ap-
proximate it. [8] argues that the empirical Fisher, how-
ever, does not approximate this information as well as
is often believed.

4

4.5. Final Network

In this work we use a multi-layer perceptron, like
that defined in [1], with two hidden layers. We have
four output values, which are the possible actions, and
height × width × number of objects inputs which are
flattened into a single layer of 4× 4× 7 = 112 inputs
which matches the state space defined in Section 3.2.1.
We use ReLU for the activation function between lay-
ers. The hyperparameters shown in Table 1 are used as
a base for our experiments.

Table 1. Parameters for simulation in example setup.
Hyperparameter Value Source
γ 0.99 [1]
ε-start 1 [1]
ε-end 0.01 [1]
Maximum timesteps 12,500
ε-length 0.9*(Maximum

timesteps)
[1]

batch size 64 [1]
learning rate 5e-4 [1]
Hidden Layer 1 Size 100 [1]
Hidden Layer 2 Size 100 [1]
Replay Buffer Uniform Sampling [3]
Replay Buffer Size 1000 [1]/10
λ (EWC Weight) 400 [2]
Max Episode Length 20

We use [10], which is an official PyTorch tutorial,
as a guide to implement our deep Q-network. This
network was made for use on an OpenAI Gym envi-
ronment, so we modify it heavily for our project.

To mitigate some of the impact of the semi-gradient
problem, we use two networks, a target network and a
policy network. The policy network is optimized ev-
ery episode, and the target network is updated with the
policy network weights every ten episodes. In the op-
timization function, the current state action values are
calculated using the current weights in the policy net-
work but the next state action values are calculated us-
ing the old weights of the target network.

The ε value is used to select actions and manage
exploration versus exploitation. A random action pol-
icy is used for exploration ε of the time. ε starts at
ε-start and is linearly annealed to ε-end over ε-length
timesteps which was used in [1].

5. Design

This section specifies the overall code design for
this experiment and describes the choice of data struc-
tures used.

5.1. Code from Other Projects

In this work, we use the environments from [1]. The
results of EWC on these environments are shown in
Section 6.1, but the majority of the work was not per-
formed in these environments.

5.2. Classes

There are two primary areas of classes defined in the
code for this experiment, those related to the agent and
those related to the environments. These are further
described in the following sections.

5.2.1 Agent

There are two classes that are used for the agent: Re-
playMemory and DQN. ReplayMemory from [10] is
used to train on instances that have already been ex-
perienced in order to make the reinforcement learning
problem more suitable for deep learning. DQN is a
definition of the network used for the agent. These
classes are defined with the structures:

- Class ReplayMemory

- def init (self) - initializes ReplayMemory
- def push(self, *args) - stores a transition
- def sample(self, batch size) - randomly

samples from previous transitions

- Class DQN

- def init (self) - initializes DQN
- def forward(self, x) - passes a state through

the network

5.2.2 Environments

There are two classes that are used for the environ-
ments: InterruptWorld and LavaWorld. These both
define the status of an environment, where Interrupt-
World models the safe interruptibility environment
from [1] and LavaWorld models the distributional shift
environment from [1]. These classes are defined with
the structures:

5

- Class InterruptWorld

- def init (self) - initializes InterruptWorld

- def reset(self) - resets the initial state of the
environment

- def step(self, action) - transitions to the next
state, given action

- def check terminal state(self) - returns
whether the environment is in a terminal
state

- def check end(self) - returns whether the
environment is in a terminal state or max
steps is reached

- def print state(self) - displays the environ-
ment state

- Class LavaWorld

- def init (self) - initializes LavaWorld

- def reset(self) - resets the initial state of the
environment

- def step(self, action) - transitions to the next
state, given action

- def check terminal state(self) - returns
whether the environment is in a terminal
state

- def check end(self) - returns whether the
environment is in a terminal state or max
steps is reached

- def print state(self) - displays the environ-
ment state

5.3. Important Functions

There are three important functions identified in this
work outside of the class functions, each of which is
described in the following:

- optimize model - optimizes the model using
Adam optimizer. Loss is calculated with EWC
and MSE or just MSE.

- select action - selects the best action given a state
using ε-greedy selection.

- plot episode - displays an episode of the setup
following optimal policy.

5.4. Data Structures

We use 2 primary data structures for this work,
external to the classes defined previously. These 2
structures are namedtuples and PyTorch [11] tensors.
Namedtuples are used in the ReplayMemory class to
represent transitions and include a state, action, next
state, and reward. This provides a means to experience
previously seen transitions.

Pytorch tensors are used to represent states, actions,
and rewards for use in the DQNs. The state tensors
have a size of 112, as described in Section 3.2.1 and
Section 4.5. The action tensors have a size of 1, which
simply represents either up, right, down, or left as 0,
1, 2, or 3, respectively. The reward tensors have a size
of 1 and represent a reward value of -30, -5, or 30, as
described in Section 3.2.3.

5.5. Calculating Empirical Fisher Information Ma-
trix

In order to calculate the empirical Fisher informa-
tion matrix, we try multiple approaches. We use a
batch size of 256 state transitions to create a loss func-
tion. Next, we take the log of this function. Following
this, PyTorch’s autograd.grad is used to find the gradi-
ent with respect to the model parameters. In our first
attempt, we then calculated the derivative again to find
∇2

Θ. Unfortunately, this was unstable and yielded both
positive and negative values in the second-order gra-
dient, which should not be possible since the Fisher is
positive.

The method that we finally used relied on only first-
order derivatives much like [2]. We calculated the
diagonal of the Fisher by squaring the gradient ele-
mentwise. Unfortunately, this produced derivatives of
zero for some parameters, which also yielded zero in
the Fisher matrix. This allows EWC to change those
parameters as much as possible without penalty. Al-
though some parameters should not matter to specific
tasks (due to the one-hot encoding input), there ap-
peared to be derivatives of zero also for some impor-
tant parameters (because an EWC loss of almost zero
still caused the model to fail to retain task A).

In an attempt to fix this, we compared against an-
other implementation and tried to instead calculate the
logloss for each transition and take the mean of these.
Unfortunately, this method had the same issue so we
didn’t use it.

6

6. Results Analysis and Discussion

This section presents the results of our experiment,
as well as, observations and discussions about those
results. It should be noted that model parameters
were randomly initialized using the default PyTorch
method. We first test our model on the safety Lava
World from [1] and then our own. Following this, we
use EWC to attempt to learn Lava World 0 (task A) and
Lava World 1 (task B). We find that EWC often fails to
remember task A, and that it never is able to solve both
after learning task B. After these initial tests, we inves-
tigate the affect that various hyperparameters have on
the outcome of our experiments. For the majority of
these, we use three runs of the algorithm. Finally, we
attempt a naive multitask approach to the problem to
show that our network indeed has the capacity to solve
two tasks.

6.1. Results on Safety Lava World

We first attempted to learn in the original gridworld
shown in Figure 2. We used 500,000 as the maximum
number of timesteps and we used a replay buffer of
10,000 like in [1]. It should also be noted that we did
not use a one-hot encoded input for this portion of the
experiment. Instead, we used the numerical state from
the environment such as the grid below, since [1] spec-
ified the “agent’s observation in each time step is a ma-
trix with a numerical representation of each gridworld
cell similar to the ASCII encoding.”

[[0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .]
[0 . 1 . 2 . 4 . 4 . 4 . 1 . 3 . 0 .]
[0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 .]
[0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 .]
[0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 .]
[0 . 1 . 1 . 4 . 4 . 4 . 1 . 1 . 0 .]
[0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .]]

Why doesn’t this method work in the original safety
gridworld? We believe that the rewards may be too
sparse. Since each episode always starts at the upper
left corner and falling in the lava resets the episode,
there is a very low probability of reaching the end-
ing. We observe that the agent begins to only os-
cillate between two tiles. This shows that the agent
learns to avoid the lava rather than attempting to reach
the goal. Figure 6 shows oscillations in returns for

Figure 6. Return at various timesteps. Please refer to [1]’s
results on this problem using the Rainbow method above in
Figure 3 for comparison. The orange line is a moving aver-
age with a 100 episode window size. Note that we improve
slightly and then stop.

around the first 250,000 timesteps then plateaus. We
interpret these oscillations as the network forgetting a
better path, which may be because the reward is too
sparse especially as ε is decreased. We believe that the
agent succesfully learns in [1] because it uses a DQN
called Rainbow. Rainbow implements several DQN
improvements such as dueling networks and double
DQNs. We use a simple DQN without these improve-
ments because it allows us to implement EWC more
easily. Additionally, Figure 3 shows us that the solu-
tion Rainbow finds takes a long time to converge. Also
note that the reward for each action is -1 in [1] rather
than the -5 we used, the reason for this is described in
Section 6.4.4.

6.2. Results on our Gridworlds

As described in Section 3.1, we developed our own
environments to simplify the problem and better ex-
plore learning in both situations. Our environments
also allowed the agent to learn in 90 seconds with
12,500 timesteps as opposed to 86 minutes for 500,000
steps in the original safety paper. Note that since we
train for 12,500 timesteps we linearly anneal ε over
0.9*12500 and not 900,000 like in [1]. We also de-
crease our experience replay memory from 10,000 to
1,000 for our environments since we are taking con-
siderably fewer timesteps.

7

6.2.1 Lava World 0

Here, we look at results for our first lava world, Lava
World 0 over 125,000 timesteps. As mentioned previ-
ously, this was considered to be the training lava envi-
ronment. The deep Q-learning algorithm’s return for
lava world 0 is shown in Figure 7 and the best policy
found is shown in Figure 8. The return results are pre-
sented using moving averages with a window size of
100 shown over three separate trials.

Figure 7. Return vs. timesteps for Lava World 0. Note that
the three lines shown here are moving averages with win-
dow size 100 as above, each from separate trials.

Figure 8. An example best path found for Lava World 0.

6.2.2 Lava World 1

Here, we look at results for our second lava world,
Lava World 1 over 125,000 timesteps. As mentioned
previously, this was considered to be the first testing
lava environment. The deep Q-learning algorithm’s re-
turn for lava world 1 is shown in Figure 9 and the best
policy found is shown in Figure 10. The return results
are presented using moving averages with a window
size of 100 shown over three separate trials.

Figure 9. Return vs. timesteps for Lava World 1. The plots
are created like in Figure 7.

Figure 10. An example best path found for Lava World 1.

8

6.2.3 Lava World 2

Here, we look at results for our third lava world, Lava
World 2 over 125,000 timesteps. As mentioned previ-
ously, this was considered to be the second testing lava
environment. The deep Q-learning algorithm’s return
for lava world 2 is shown in Figure 11 and the best pol-
icy found is shown in Figure 12. The return results are
presented using moving averages with a window size
of 100 shown over three separate trials.

Figure 11. Return vs. timesteps for Lava World 2. The plots
are created like in Figure 7.

Figure 12. The best path found for Lava World 2.

6.2.4 Interrupt World

The deep Q-learning algorithm’s return for Interrupt
World is shown in Figure 13 and the best policy is in
Figure 14. It is notable that the algorithm never discov-
ered that the button would guarantee that the interrupt
was safe, even when the interrupt was set to almost al-
ways cause a problem. Since the DQN failed to learn
the best path here, we decided not to use this when
trying to learn multiple tasks.

Figure 13. Return vs. timesteps for the Interrupt World. The
plots are created like in Figure 7.

Figure 14. The best path found for Interrupt World. Notice
how the optimal path would go to the button first (since the
interrupt has a chance of causing the episode to end other-
wise).

9

6.3. EWC Results

In order to test EWC, we first train on a task A and
save the parameters. We then compute the Fisher In-
formation Matrix as described above with a batch of
256 samples from our replay memory. Next, we at-
tempt to train on task B using EWC as described in [2].
We load the model parameters from task A as a start-
ing point and use the loss defined in equation 2. As
mentioned previously, we choose to use Lava World 0
as task A and Lava World 1 as task B. This is because
the same solution path won’t work for both. The result
is shown in Figures 15, 16, and 17. Additionally, the
time for each run increases from 90 seconds to 110.

Figure 15. Moving average of return vs. timesteps for three
trials of EWC as it learns Task B. From the figure, we can
see that it successfully learns Task B near the end.

Although the model succesfully learns task B, it for-
gets task A and makes a mistake which is shown in
Figure 17. So, why doesn’t EWC work? The solution
above has task B solved and then on task A it walks
partially to task A’s goal and jumps in the lava. Why?
If we look at task B’s world, it was avoiding the lava
in row 3, column 3 (which didn’t exist in task A).

The EWC loss displays an interesting pattern. Fig-
ure 16 shows how it starts at 0 when the parameters of
the model are the same as the solution to task A. As the
model begins to learn task B, the EWC loss goes up as
the task B loss, LB(θ), is quickly decreased. After the
task B loss has been minimized, the EWC term comes
into play and is minimized towards zero.

Figure 16. The EWC loss vs. the number of times the loss
has been computed (this happens roughly every timestep).
This corresponds to Figure 15. Note that EWC loss refers
to the summation term on the right-hand side of Equation 2.

Figure 17. The best paths found using EWC. a) The best
path found for task A. b) The best path found for task B. c)
Path taken on task A after learning task B.

10

In the original catastrophic forgetting paper [2], the
solution quality on task A eventually degrades. This
is clear because the quality of the solution for task A
decreases by some percentage. In a discrete gridworld,
one move off the path breaks the identified solution. In
something like ATARI or MNIST that relies on image
data, the network and policy is more receptive to small
perturbations, and can recover more easily. For exam-
ple, in breakout if the paddle moves the wrong way on
one frame, then the ball will move and it might then
move the correct way on the next few frames. This
doesn’t apply in gridworld, where if you get stuck you
never reach the goal. Since these gridworld solutions
end up with a deterministic policy that produces one
solution, if we wander off the path at only one point
the agent fails.

Another critical reason for failure is that the gradi-
ent of the model parameters is zero for some values.
This causes the empirical Fisher Information Matrix
diagonal to have some zero values in it. This makes
some sense, since we use a one-hot encoding as in-
put so there are unused weights. However, this phe-
nomenon seems to occur even on weights which were
used in task A. Since Fi is 0, those weights to be
changed without being regularized in task B even if
they might matter to task A. Looking at Equation 2, we
can see that this will cause the penalty for that parame-
ter to be zero no matter how much the weight changes
from the original solution.

6.4. EWC Investigation

Several changes were attempted to get EWC to
work. Unfortunately, none had a significant impact
on performance. The results of this investigation are
shown in the following sections.

6.4.1 Changing Network Capacity

We attempted to change the capacity of the network
to allow freedom to hold more solutions. The results
of this can be seen in Figure 18 and Table 2. These
results establish that network capacity is unlikely to be
the cause of failing to retain task A. We can also see
that shrinking the hidden layers too much can cause
them to fail to learn at all (for 10,10). We continue to
use (100, 100) since it is used in [1] and provides

Figure 18. Moving average of return vs. timesteps on task B
for three trials of EWC with each hidden layer having 200
hidden nodes.

Table 2. Table of attempted networks
Hidden layer
1 size

Hidden layer
2 size

Outcome

100 100 Failure to retain A
200 200 Failure to retain A
10 10 Failure to learn A/B
20 10 Failure to retain A
20 20 Failure to retain A

additional capacity for retaining more patterns than the
smaller models.

6.4.2 Different Batch Sizes for Calculating Fisher

We next tried to increase the batch size for calculat-
ing the empirical fisher information matrix. We tried
increasing it from 256 to 512 and 1,000, but this pro-
duced no noticeable results that we could measure.

6.4.3 Change the Learning Rate

We noticed that EWC loss could be jumpy, so we next
tried to reduce the learning rate on task B from 5e-4
to 5e-5. Unfortunately, this also didn’t work. Since
the learning rate was reduced, we tried to learn for
50,000 timesteps instead, as presented in Figure 19,
which also failed to retain task A. The loss is success-
fully smoothed, but the model still fails to retain task
A. It’s also interesting to note the bimodal distribution
that appears to form in all three distinct trials. The rea-
son for this might be related to the optimizer we used,

11

Figure 19. EWC curve of learning rate at 5e-5. Note that we
used 50,000 timesteps here instead of 12,500.

Adam. The model might settle into one basin of attrac-
tion (minima) and start minimizing the EWC loss in
that but then escape to minima with which temporarily
increases the EWC loss again. It isn’t clear why this
tends to happen only twice.

6.4.4 Changing Step Reward

One notable difference between the safety gridworlds
paper and our gridworlds is that we use a reward of
-5 instead of -1 for each step. There is a clear reason
behind this. We initially started with -1, and then we
tested -3 and -5. Our model attempts to approximate
the value for each action, this means that the differ-
ence between states will only be -1. An action that
moves into the goal will have an approximation of 30.
The action that moves into the state next to the goal
will have an approximation of 29. If we use -5 instead,
the second action will instead have a value of 25. The
aim of increasing the penalty for an action here is to
widen the distance between these action values. Ide-
ally this would make the network more secure against
perturbations, since it takes more changes to a weight
to cause it to shift a value by 5 rather than 1. Each state
has four action Q-values, and we pick the highest ex-
pected return. We had hoped that if these four values
were farther apart then changing the weights wouldn’t
change which one is the highest Q-value. If the highest
Q-value changes, then the agent moves in the wrong
direction so it can no longer reach the goal of task A.
We hoped that this would help prevent actions in task

A states from being changed. Since we either fail or
succeed at reaching the goal (and we didn’t succeed
at reaching it for task A after learning B), we cannot
measure whether doing this helped.

6.4.5 Change the EWC Weight

The λ hyperparamter for EWC controls how well we
should remember task A. In [2] they empirically deter-
mined a value of 400. We also used this value for most
of our experiments.

Figure 20. EWC curve with weight λ = 1000. The figure is
difficult to decipher since larger λ value causes the function
to resemble a corner, but it resembles the other EWC curves
above.

Since we were failing to retain task A, we tried to
increase the value of λ to 1,000 (shown in Figure 20)
and then 10,000. These both failed to retain A and
learn B. The zero gradient observed previously means
that changing the weight λ just doesn’t matter for some
parameters.

6.4.6 Use Minimum Value in Fisher Information
Matrix

In order to address the problem we found with the zero
gradient values, we implement the following equation
to modify the fisher information matrix:

Fi = max(Fi, α) ∀ parameters i (3)

We tested this with a combination of α and λ values,
without any significant luck on any combination as can
be seen in Table 3 and Figures 21 - 26. Values of α

12

Table 3. Trials using minimum fisher value
λ α Result
400 1 failed A failed B
1,000 1 failed A failed B
10,000 1 retained A failed B
10,000 1 retained A failed B
100 .01 failed A learned B
150 .01 failed A learned B
200 .01 failed A failed B
300 .01 failed A learned B
5000 .01 failed A failed B
7500 .01 failed A failed B
10,000 .01 failed A failed B
100,000 .01 failed A failed B

Figure 21. This shows the the return on task B for the first
hyperparameter combination (λ = 400 and α = 1). It fails to
learn task B and forgets A. Since we only tried each of these
hyperparameter combinations once due to time constraints,
we also show the return (blue) along with the moving aver-
age (orange).

and λ are multiplied together in Equation 2, so they
both have very similar affects on the loss (larger val-
ues try to retain task A more). This can be seen in
Figure 23 since the average return actually decreases.
The EWC loss values in the corresponding Figure 24
are remarkably low given the hyperparameter combi-
nation, and the jitter is likely because the learning rate
is too high for the loss function with such large hyper-
parameters. Another interesting trial is in Figure 25

Figure 22. EWC vs. number of optimizations done corre-
sponding to Figure 21.

Figure 23. This shows the the return on task B for the only
hyperparameter combination (λ = 10,000 and α = 1) which
doesn’t forget task A. Notice that the returns get worse as
the epsilon value decreases since we aren’t taking as many
random actions.

and 26. This trial was run for 12,500 more timesteps
without changing ε, and it shows interesting periodic
behavior as well as showing that more time doesn’t
yield improved performance. It fails to have learned
task B at the end, although the model appears to learn it
and then forget, which indicates that the solution may
not be completely stable.

13

Figure 24. EWC vs. number of optimizations done corre-
sponding to Figure 23.

Figure 25. This shows the the return on task B for the hy-
perparameter combination (λ = 200 and α = 0.01). It is run
for 12,500 more timesteps with ε = ε-end.

6.5. Naive Multitask Approach

As a proof that the network we use is capable of
learning to solve two tasks, we implement what we
call a naive multitask approach to the problem. We
randomly selected one of two environments with equal
probability for each episode and learned otherwise
normally. We successfully learned both problems on
Lava World 0 and 1. Although this is not the same as
most multitask approaches (which often have separate
loss functions for each task), it is similar in the fact
that it tries to learn the two tasks at once. The optimal

Figure 26. EWC vs. number of optimizations done corre-
sponding to Figure 25.

Figure 27. Example of optimal paths found using the naive
multitask approach. a) Optimal path found for task A. b)
Optimal path found for task B.

paths found for each world can be seen in Figure
27. This occurred in the same number of timesteps
we used for training previously, which indicates that
finding the best path for one task might help learn the
other task. Figure 28 shows the average return for five
trials which all successfully learn both tasks. This
shows that our network does in fact have the capacity
to hold solutions for multiple tasks.

14

Figure 28. Average return vs. timestep for 5 distinct trials
of the naive multitask approach.

7. Conclusions

In this project we implemented DQN with EWC in
an attempt to solve 2 AI Safety Gridworld environ-
ments using a single network. Knowing that these en-
vironments were going to be difficult to learn in, we
were unsure of how realistic a robust solution would
be. Although this project was overall unsuccessful,
several things were learned.

First, we discover that grid world may not be well-
suited for deep Q-learning (nontabular) approaches
due to being very discrete. One-hot inputs may actu-
ally make this worse. In the safety paper, it is clear that
even Rainbow struggles somewhat, and doesn’t reach
the optimal solution. This is amplified in our prob-
lem using an unimproved DQN. Additionally, small
perterbations in the network can easily break the solu-
tion, since even taking one action wrong causes prob-
lems (e.g. we jump into lava). Tabular approaches
are likely to be much better at solving gridworld prob-
lems. However, they cannot be used for learning mul-
tiple tasks with EWC, which is why we didn’t explore
their use.

Second, we discover that the naive approach is able
to learn both tasks. Although this learning is not done
in a manner that matches our problem goal, this shows
that EWC is able to maintain relevant information nec-
essary to perform both tasks. With further exploration
into the various parameters or revised task sampling

order, EWC may thus potentially be a feasible solu-
tion. Due to our time constraints, however, we were
not able to further explore this.

8. Appendix

Carl Edwards was primarily responsible for lead-
ing software development and parameter exploration /
problem definition. Brandon Mathis was primarily re-
sponsible for leading development of supporting soft-
ware and documentation.

References

[1] J. Leike, M. Martic, V. Krakovna, P. A. Ortega,
T. Everitt, A. Lefrancq, L. Orseau, and S. Legg,
“Ai safety gridworlds,” 2017.

[2] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Ve-
ness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in
neural networks,” Proceedings of the national
academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540,
p. 529, 2015.

[4] R. Kemker, M. McClure, A. Abitino, T. L. Hayes,
and C. Kanan, “Measuring catastrophic forget-
ting in neural networks,” in Thirty-second AAAI
conference on artificial intelligence, 2018.

[5] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” 2014.

[6] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri,
B. Prochnow, and A. Y. Ng, “On op-
timization methods for deep learning,” in
Proceedings of the 28th International Confer-
ence on International Conference on Machine
Learning, ser. ICML’11. USA: Omnipress,
2011, pp. 265–272. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3104482.3104516

15

http://dl.acm.org/citation.cfm?id=3104482.3104516
http://dl.acm.org/citation.cfm?id=3104482.3104516

[7] Stephanie, “Fisher information / expected
information: Definition,” Sep 2018. [On-
line]. Available: https://www.statisticshowto.
datasciencecentral.com/fisher-information/

[8] F. Kunstner, L. Balles, and P. Hennig, “Limi-
tations of the empirical fisher approximation,”
arXiv preprint arXiv:1905.12558, 2019.

[9] J. Duchi. [Online]. Available: https://web.
stanford.edu/class/stats311/

[10] A. Pazke, “Reinforcement learn-
ing (dqn) tutorial.” [Online]. Avail-
able: https://pytorch.org/tutorials/intermediate/
reinforcement q learning.html

[11] A. Paszke, S. Gross, S. Chintala, G. Chanan,
E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differenti-
ation in pytorch,” 2017.

16

https://www.statisticshowto.datasciencecentral.com/fisher-information/
https://www.statisticshowto.datasciencecentral.com/fisher-information/
https://web.stanford.edu/class/stats311/
https://web.stanford.edu/class/stats311/
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

