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ABSTRACT
Many new and exciting chemicals have been discovered. However,
the reactions to produce them often produce low reaction yields
or require expensive intermediate reactants. The chemicals cannot
be used because they are too difficult to create at the large scales
required for industrial use. In order to remedy this problem, finding
new reactions with improved yields or scalability is very desirable.
I plan to use a knowledge graph of chemical reactions and molecule
information to perform knowledge graph completion to find new
reactions. In particular, I plan to approach this problem using joint
embedding techniques.

KEYWORDS
molecules, reactions, knowledge graphs, embeddings
ACM Reference Format:
Carl Edwards. 2021. Multimodal Molecule Reaction Mining from Knowledge
Graphs. In Proceedings of CS 512 (Data Mining Principles). , 2 pages.

1 INTRODUCTION
Chemicals are ubiquitous in everyday life. Whether enabling the
latest breakthroughs and products in technology, medicine, or ma-
terials, they are an essential component of modern day life. In order
to create the chemicals, reactions consisting of other chemicals are
required. However, finding reaction routes which are scalable and
efficient can be very challenging. For example, a critical drug might
be found for some disease, but there is no way to produce it at a
large enough scale to be made commercially. To address this issue, it
is important to find new reactions to create existing compounds. To
do this, I propose using a joint-embedding based method between
molecules and reactions framed as a knowledge graph.

2 RELATEDWORKS
In the past, chemists would consider hundreds of possible reactants
and conduct many experiments to find new reactions. However,
the recent success of data mining and machine learning techniques
opens a new avenue to find these reactions. Work such as [7, 12] fo-
cus on using computers to plan reactions. [6] focuses on automating
reaction network construction from reaction databases. Addition-
ally, recent approaches such as [1, 8, 11] apply deep learning to
plan retrosynthetic reactions or drug-drug interactions. In particu-
lar, [10] creates a knowledge graph from Reaxys 1 data. The data
consists of 14.4 million molecules and 8.2 million binary reactions
1https://www.reaxys.com/
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between them, which consists of the majority of chemical reac-
tions in the literature up to 2013. They use reactions from 2014
and 2015 as a validation dataset and find that they can indepen-
dently re-discover 35% of challenging novel reactions discoverd
in those years (reactions without ‘template’ reactions from prior
work). This work uses a breadth-first search based model which
prunes possible reaction paths based on Tanimoto similarity of
reaction fingerprints.

Additionally, machine learning has become more popular in
cheminformatics. Representations for molecules such as mol2vec
[3] andMolBert [2] create embedding representations by leveraging
the recent success from natural language processing algorithms.
These are applicable to various downstream tasks, such as molecule
property prediction.

3 DATASETS
Unfortunately, the chemistry community is much more closed and
proprietary than data mining. There are not standard datasets and
many of the best databases are proprietary. For example, I would
like to use the knowledge graph created in [10], but it was created
using Reaxys, a commercial database. However, UIUC appears to
have access to Reaxys 2. I plan to follow the methodology from [10]
to create a similar reaction database, although I might restrict its
size.

If using reaxys does not work, several other potential options are
listed at http://organicworldwide.sitehosting.be/content/reaction-
databases. Additionally, NIST [5] has a kinetics database of reactions
which could prove useful. Finally, the PubChem [4] dataset contains
information on millions of chemicals and a RDF with links between
some of them. Although these links are not necessarily reactions,
predicting relations in this case would also be useful. This graph,
however, may prove to be too sparse. Further, PubChem has about
16,000 links to molecules in WikiData. This could also potentially
serve as a useful dataset for infusing knowledge graph embeddings
with chemical information.

4 PLAN AND TIMELINE
For my project, I propose using molecule representations to help
‘steer’ the embedding of a reaction knowledge graph to improve
performance on relation prediction. Rather than use a domain-
engineered approach, I hope to use and end-to-end model for link
(reaction) prediction. I plan to incorporate the molecule embed-
dings in two ways. First, I plan to use a multi-layer perceptron to
incorporate the information after the node embedding. Second, I
plan to create a separate, aligned embedding space. I have been
working on embedding text in this manner, and I believe replacing
it with knowledge graphs would be a promising alternative which

2https://www.library.illinois.edu/chx/reaxys/

http://organicworldwide.sitehosting.be/content/reaction-databases
http://organicworldwide.sitehosting.be/content/reaction-databases
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is well-suited to this class due to its focus on graph and network
mining this semester.

• March 25th: Create dataset
• April 7th: Create baseline using a KG embedding model such
as relational GCN [9]

• May 1st: Incorporate molecule representation into KG em-
beddings.
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