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ABSTRACT
Many new and exciting chemicals have been discovered. However,
the reactions to produce them often produce low reaction yields
or require expensive intermediate reactants. These chemicals can-
not be used because they are too difficult to create at the large
scales required for industrial use. In order to remedy this problem,
finding new reactions to produce desired products with improved
yields or scalability is very desirable. To tackle this problem, I pro-
pose using transformer neural network architectures to augment
molecule representations for predicting molecule reactions. In this
project, I frame the problem as an information retrieval task, and I
achieve a Hits@1 value of 50%. Further, I try to predict the reaction
yield, although this does not prove effective using the transformer
architecture.
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1 INTRODUCTION
Chemicals are ubiquitous in everyday life. Whether enabling the
latest breakthroughs and products in technology, medicine, or ma-
terials, they are an essential component of modern day life. In order
to create chemicals, reactions consisting of other chemicals are
required. However, finding reaction routes which are scalable and
efficient can be very challenging. For example, a critical drug might
be found for some disease, but there is no way to produce it at a
large enough scale to be made commercially. To address this issue,
it is important to find new reactions to create existing compounds.
To do this, I propose the use of transformers to enable this planning.
Chemical reactions take “reactants" as input, and they produce
“products" as output. Thus, my model model takes embeddings of
reactants as input, and it tries to predict a product as output.

Initially, I planned to frame the problem as a link prediction task
by turning reaction data into a knowledge graph, such as in [20].
However, I encountered considerable difficulty in accessing this
data. Further discussion about datasets is in Section 2.1. Due to
these problems with data, at the midterm report I planned to use
three non-reaction graph datasets. However, between the midterm
report and final submission, I have been able to gain access to the
Chemical Reactions from US Patents Dataset [11]. Unfortunately,
this dataset has not been amenable to creating a graph, so I have
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instead taken a transformer-based approach. My proposed model
integrates mol2vec [7] embeddings into a transformer architecture
to predict the final reaction product.

2 RELATEDWORK
In the past, chemists would consider hundreds of possible reactants
and conduct many experiments to find new reactions. However,
the recent success of data mining and machine learning techniques
opens a new avenue to find these reactions. Work such as [14, 22]
focus on using computers to plan reactions. [13] focuses on au-
tomating reaction network construction from reaction databases.
Additionally, recent approaches such as [1, 16, 21] apply deep learn-
ing to plan retrosynthetic reactions or drug-drug interactions. In
particular, [20] creates a knowledge graph from Reaxys 1 data. The
data consists of 14.4 million molecules and 8.2 million binary re-
actions between them, which consists of the majority of chemical
reactions in the literature up to 2013. They use reactions from 2014
and 2015 as a validation dataset and find that they can indepen-
dently re-discover 35% of challenging novel reactions discoverd
in those years (reactions without ‘template’ reactions from prior
work). This work uses a breadth-first search based model which
prunes possible reaction paths based on Tanimoto similarity of
reaction fingerprints.

Additionally, machine learning has become more popular in
cheminformatics. Representations for molecules such as mol2vec
[7], MolBert [6], and ChemBerta [4] create embedding represen-
tations by leveraging the recent success from natural language
processing algorithms. These are applicable to various downstream
tasks, such as molecule property prediction [26].

Recent approaches have tackled similar problems to reaction pre-
diction. [17] and [19] use transformers to learn “atom-mappings"
between reactions and products. [18], which was published four
weeks ago, takes this a step further to learn grammars for these
reactions. Unlike this work, I focus on integrating molecule rep-
resentations together rather than aligning atoms. My approach is
less rule-based allowing for more flexibility, but errors are more
difficult to diagnose.

2.1 Related Datasets
Unfortunately, the chemistry community is much more closed and
proprietary than data mining. There are not standard datasets and
many of the best databases are proprietary. I tried to use Reaxys,
which is themost complete and commonly used database [20]. UIUC
has a license to use Reaxys 2, however, this does not include access
to the Reaxys API which is needed in order to query reactions in
bulk for building a dataset.

1https://www.reaxys.com/
2https://www.library.illinois.edu/chx/reaxys/
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The PubChem [8] dataset is one of the largest openly available
public datasets. It contains information on millions of chemicals
and a knowledge graph with links between some of them. Although
these links are not necessarily reactions, predicting relations in this
case could also be useful. In particular, I extracted three different
graph datasets. These are graphs linking compounds with the same
connectivity, isotopologues, and compounds to their components.
The connectivity describes molecules which are isomers with iden-
tical constitutions. The isotopologues are molecules with the same
formula and configuration, but they have different numbers of neu-
trons. Finally, the compound2component dataset links a molecular
substance to one of its neutral ions.

The Chemical Reactions from US Patents Dataset [11] consists of
1.9 million reactions extracted from US patents from 1976 to 2016.
This work focuses on predicting the products of these reactions.
This reaction also contains computer-calculated yield rates for these
reactions, which I use as a regression task.

3 PROBLEM DEFINITION
Given a dataset 𝐷 containing 𝑛 reactions, the goal is to predict
the products (output) of the reactions from the reactants (input). I
frame this task as an information retrieval task, which is similar
to link prediction in knowledge graphs such as in [2]. To do so, I
restrict the data to only contain reactions with one product. Thus,
multiple reactants (input) combine together to make one product
(output). This can be thought of as a graphwith non-binary relations
between the nodes. The goal is to predict these non-binary links.
The products in the dataset are ranked by their probability of being
the reaction output. Thus, the problem can be evaluated using
standard metrics such as mean rank, mean reciprocal rank (MRR),
and Hits@1. Given a vector of ranks, 𝑅, for 𝑛 reactions:
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This can also be thought of as a many-class classification problem,
where ranking the correct product at 1 indicates it is correctly
classified.

4 METHODOLOGY
4.1 Morgan Fingerprinting
Molecule fingerprints have been used for a long time in cheminfor-
matics [3]. Typically, they map a substructure to some string of bits
in a manner that allows them to be used for quick substructure and
chemistry search of molecules. The most common method is Tani-
moto similarity, also known as Jaccard coefficient. Another example
is the extended-connectivity fingerprint [15], often known as the
Morgan fingerprint. This computes a bit string for substructures in
the molecule as follows:

(1) Assign each atom an initial identifier. This identifier is ob-
tained by using the Daylight atomic invariants rule [25],

which incorporates information on the atom type, its bond
types, and other chemical properties.

(2) Update each atom’s identifier to incorporate the identifiers
of its neighboring atoms.

(3) Remove structural duplicates from the identifier list.
(4) Repeat (2) and (3) until desired radius 𝑟 is reached.

An illustration of this iteration is shown in Figure 1. The algo-
rithm results in an identifier (a bit string) for each substructure in
the molecule.

4.2 Mol2vec
We base the approaches in this work on mol2vec representations
[7]. The mol2vec algorithm, given an input radius 𝑟 , is as follows:

(1) Process molecule to obtain Morgan fingerprints for each
substructure. An identifier is created for each substructure
centered on atom 𝑎. The first identifier is for radius zero, so
the substructure only contains 𝑎. The next identifier is radius
1, so all atoms bonded to 𝑎 are also included. This process is
repeated for all atoms 𝑎 starting at radius zero until a desired
𝑟 value is reached.

(2) Reorder the identifiers from the molecule into a sequence.
This sequence is unique, since it is based on canonical SMILES
[24].

(3) Create a corpus from all the molecules available using their
sequences.

(4) Use the word2vec algorithm [12] on this corpus to create
embeddings for these substructures.

(5) For each molecule, create its embedding by adding together
all its constituent substructure embeddings.

4.3 Baseline
For the model baseline, I use mol2vec. mol2vec representations for
molecules are created by summing together the molecule graph
“substructure" representations. In a chemical reaction, many sub-
structures are preserved between the input molecules and outputs.
Thus, summing the reactants (which themselves are a sum of sub-
structures) is a good way to approximate a chemical reaction. For
the baseline, I sum the mol2vec embeddings of all the reactants and
compare these to all the product embeddings using cosine similarity.
All the products in the dataset are ranked based on their similarity
to the sum of reactants (the predicted product).

4.4 Transformer-Based Model
To improve upon the baseline model, I adapt the transformer ar-
chitecture [23]. As input, I use the molecule representations from
mol2vec. Inspired by the work of BERT [5], I also introduce a [CLS]
token to to represent the reaction as a whole. This token is con-
nected to a pooling layer, which is densely connected to a product
layer which outputs a predicted product vector. The predicted prod-
uct can be compared to the true product. An example of this model
is shown in Figure 2. The output of the model is used to rank all
the products in the dataset using cosine similarity.
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Figure 1: An example of Morgan fingerprinting iteration for an oxygen atom. The initial fingerprint of the oxygen is -
1074141656, which is updated to 2099970318 after the first iteration. At each iteration, every identifier is updated based on
its neighbors. The distance of nodes incorporated into an atom’s identifier grows each iteration, much like how a graph con-
volutional network works.

Figure 2: The transformer-based model. 𝑅𝑖 are the reactant embedding inputs and 𝑃 is the product embedding.

4.4.1 Loss. To train this model, two losses are used. The first is
mean-squared error loss, which is defined as:
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𝑑 is the number of dimensions used for the molecule embeddings.
Second, I use cosine loss, which is defined as:
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This is essentially the cosine similarity subtracted from one, aver-
aged over the batch size.

4.5 Transformer-Based Model for Yield
Prediction

Beyond predicting reaction results, it is a paramount problem in
chemistry to predict how effective the reactions will be: their yield.
I try to predict the reaction yields by augmenting the transformer-
basedmodel. I add a [SEP] token followed by the product embedding
to the input of the transformer-model. This takes the following
form:

[𝐶𝐿𝑆] 𝑅1 𝑅2 ... 𝑅𝑚 [𝑆𝐸𝑃] 𝑃

where 𝑅𝑖 is a reactant mol2vec embedding and 𝑃 is the product
embedding. I also replace the product output layer with a single
output neuron and a sigmoid activation function. This allows the
model to predict a yield between 0 and 1, which is optimized using
mean-squared error loss.

5 EXPERIMENTS
5.1 Dataset
Since the US Patents dataset is very large (1.9 million reactions), I
extracted the first 50,000 reactions. These reactions are presented
as a type of SMILES string. I processed these reactions using RDKit
[10], an open-source cheminformatics package for python. Doing
so removed 3,850 reactions which couldn’t be processed. Following
this, I created an SDF (structure-data file) formatted-file from all the
molecules in this reaction. I used the mol2vec algorithm to create
representations for these molecules. In the process, I was forced
to remove 36 molecules that did not have Morgan fingerprints
out of a total of 89,401 molecules. Doing so removed a further
107 reactions, which left 46,043 reactions in the dataset. I further
split this dataset using an 80%/20% train/test split, so there are
36,834 training reactions and 9,209 test reactions. Additionally, the
reactions are split in chronological order. This is done to prevent the
model from cheating on the test set by learning a more complicated,
encompassing reaction in the training phase. I did not perform
hyperparameter tuning or early-stopping, so I found this split to
be sufficient. I trained my models on the training set and evaluated
their performance on the test set. I found the most reactants to be
21, so I set the padding length of the transformer model to 24.

The mol2vec algorithm was used to convert the SMILES string
representation of a molecule to an embedding. Default values were
used: a radius of 1 and a window size of 10. Additionally, I decided
not to replace infrequent tokens (substructures) with a standard
UNK token (unknown). This would remove the uniqueness of rare
tokens, which may substantially decrease the ability to predict re-
actions. Although the embedding of these rare tokens is likely poor,
it is better for them to be unique from other reactants in different
reactions. This way, the transformer can still learn about them,
rather than learning about an “unknown" molecule substructure
with properties that cannot exist in nature. Its properties would not
be able to exist in nature because it implies a unique substructure;
however, in some molecules the same substructure would not be
compatible, so it doesn’t exist.

The yields that were reported in the dataset were computed
values (rather than experimentally measured). Unfortunately, this
meant they had errors: there were many reactions with yields above
100%, which is only possible given impurities in the process. In
fact, there was even a reaction with a yield of 28,000%! I removed
these reactions, which reduced the dataset substantially by 22,623
reactions. I also normalized the yields to be between 0 and 1.

5.2 Results
All transformer models were trained using Adam optimizer [9] with
a learning rate of 1e-4, which was used in the original Transformer
paper [23]. A batch size of 256 was used, and the models were
trained for 40 epochs.

5.2.1 Baseline. The baseline model performed very well on its own.
It achieved a Hits@1 of 31.6%, as shown in Table 1. Additionally,
the mean reciprocal rank (MRR) is 0.436. If all reactions had the
same rank, this would be equivalent to a mean rank of 1

0.436 = 2.29.
However, the mean rank is 301.0. This indicates that there are
outliers which the baseline has a lot of trouble predicting.

5.2.2 Transformer-MSE. The transformer-based model shows a
substantial improvement. Transformer-MSE (mean-squared error)
has a Hits@1 value of 40.2%, which is an absolute improvement
of 8.6%. Additionally, the model has a mean rank of 189.1. This
indicates that it is not making many of the errors found in the
baseline.

5.2.3 Transformer-COS. To further improve the model’s perfor-
mance, we replace the mean-squared error loss with cosine loss.
This can be seen as relaxing constraints on the model. The cosine
loss forces the target and predicted embeddings to be aligned. This
differs frommean-squared error loss, which requires the two embed-
dings to be located at the same point in the space. This modification
allows the model to be more flexible in how it builds an output
space of products, which allows it to better handle edge cases.

Transformer-COS proves to perform significantly better than
Transformer-MSE. It has a Hits@1 value of 49.6%, which is nearly
50%! This is a 9.4% absolute improvement over Transformer-MSE
and an 18% absolute improvement over the baseline.

5.2.4 Transformer-BasedModel for Yield Prediction. Since the dataset
had computer-calculated yield values for the reaction, I attempted
to modify my transformer model to predict these. If effective, this
would allow for much faster calculation of reaction yields, which
could be used as a tool to screen reactions to test in the lab. Un-
fortunately, this approach has not been effective. The error during
training is shown in Figure 3, which indicates that the model does
not generalize well to the test set. Although there is a slight initial
improvement, this quickly vanishes. There are likely two reasons
for this. The first is that the data is not representative of the true
reaction yield. In order to preprocess the yield rate data, removing
22,623 reactions was required. This is because these reactions had
yields greater than “100%" (including one over 28,000%), gave a
range such as “60-90%", or contained words such as “around 80%".
Since there is substantial noise in this data, it is likely that it may
not correctly describe the true yield. The second issue is that not
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Method Mean Rank MRR Hits@1 Hits@10 Hits@100 Hits@1000
Baseline 301.0 0.436 31.6% 65.9% 81.5% 92.3%

Transformer-MSE 189.1 0.536 40.2% 76.4% 88.9% 95.6%
Transformer-COS 147.0 0.622 49.6% 82.7% 92.0% 96.8%

Table 1: Reaction prediction results for the test set. The transformer-based approach clearly outperforms the baseline. The
Hits@1 value for model trained with cosine loss approaches 50%!

Figure 3: This figure shows the mean-squared error of the yield prediction task as it is trained. The training MSE clearly
improves. However, this improvement does not generalize to the test MSE.

enough training data was used. I tried to introduce dropout to reg-
ularize the network, but this did not help. More data would help to
regularize the network and improve its generalization to the test set.
Additionally, since so many reactions were removed in preprocess-
ing, the dataset was much smaller. Finally, using a chronological
data split might cause issues for yield prediction, since the two
splits may have different underlying data distributions.

5.3 Error Analysis
Due to using deep learning-based models, understanding the errors
the model makes is very difficult. To do so, I examine high level
trends and specific errors. As suggested above, the majority of
reactions have a low rank. This is shown in Figure 6 for Transformer-
COS. This histogram of ranks is a log-log curve. I fit a line to the
smooth part of the red line (before rank 102), which gives the
coefficients [-1.54, 7.84]. This indicates that the distribution can be
described by the following power law.

𝑐𝑜𝑢𝑛𝑡 = 7.84 × 𝑟𝑎𝑛𝑘−1.54

This indicates that large errors tend to be outliers and that the high
mean rank values are skewed by these outliers.

I also investigate whether any properties of the reaction indicate
that it will be more difficult to predict. Figure 7 shows that more
reactants create uncertainty in the predicted product, which in-
creases the average rank. There are two explanations for this. First,
having more reactants leads to a more complex reaction, which is
harder to predict. Second, there is significantly less training data for
reactions with a large number of reactants, so the model might not

be trained well to incorporate so many reactants. Both explanations
likely play a part in this phenomenon.

Figure 4 shows an example where the Transformer-COS fails to
predict the correct reaction. It is difficult to understandwhy it makes
this error. However, this does reveal an interesting phenomenon
in the dataset: many patents leave out additional products from
the reaction. In the reaction in Figure 4, the third reactant contains
two oxygen molecules (indicated by red Os). However, the correct
final product only has one oxygen, which means that there is an
additional product from the reaction that wasn’t written in the
patent. This is likely because chemists would implicitly understand
that, for example, the molecule might also produce water (H2O).
This problem with incomplete data is a substantial challenge for
computer-based reaction prediction algorithms. The performance
would likely be increased with more complete reaction information.
However, the model is still able to predict products in many cases
without these extra products. Figure 5 shows a reaction where the
chlorines are discarded. However, the model still correctly ranks
the correct product number one.

6 CONCLUSION
Predicting chemical reactions is an incredibly important problem.
There are millions of chemicals, and laboratory experiments are
both time-consuming and slow. To facilitate faster chemical under-
standing and research, I applied data mining techniques to predict
these reactions without laboratory effort, which could help sci-
entists to decide which of many pressing experiments to devote
their time to performing. In this work, I apply state-of-the-art deep
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Figure 4: Reaction to form Cyclohexyl-[6,8-dibromo-2-(2-methoxyphenyl)-5-methyl-imidazo[1,2-a]pyridin-3-yl]-amine.
Transformer-COS predicts this product at rank 7,488.

Figure 5: Reaction to form 1-N,3-N-Bis(1,3-benzodioxol-5-ylmethyl)benzene-1,3-dicarboxamide. Transformer-COS predicts
this product at rank 1.

learning, data mining, and natural language processing techniques,
particularly the transformer, to perform reaction prediction. This
approach allowed me to reach 50% Hits@1 for product prediction
on my test set. Unfortunately, the model does not work well for
yield prediction, but this may be due to issues in the dataset instead.

While the prediction results are quite good, I found this problem
to have multiple challenges. The first was finding and obtaining a
suitable dataset. I found many possible datasets to be dead ends,
and I had to plan contingency plans which took a lot of time. Al-
though I finally found an appropriate dataset, doing so delayed my
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Figure 6: A histogram of the distribution of ranks for
Transformer-COS. The red line is a spline visualizing the
count of each unique rank.

Figure 7: Scatterplot of number of reactants vs. rank for
Transformer-COS. The red curve is a linear fit, which shows
that more reactants cause a reaction that is more difficult to
predict. The y-axis is plotted in log-space for visual clarity.

project’s implementation and required me to redirect my approach.
This leads to the second challenge: this reaction dataset consisted
of non-binary reactions, which made it intractable to construct a
graph. Thus, I reframed my problem to use an information retrieval
approach, which is still similar to link prediction in knowledge
graphs but using non-binary relations. These challenges forced me
to be flexible and shift my thinking between different topics in data
mining, which I believe has helped to solidify my understanding of
the topics learned in class.

7 FUTUREWORK
By applying deep learning-based techniques, I was able improve
upon my initial baseline significantly in this project. In the future, I

hope to augment this approach using text mining to further improve
results. I plan to extract textual information about reactions from
the literature, allowing me to better predict how reactions will
occur.

Additionally, much work remains in reaction yield prediction. I
believe it would be beneficial to incorporate existing knowledge in
the form of “reaction rules." By combining a classical approach and
a distributional hypothesis-based embedding approach, it may be
possible to outperform either method individually. To evaluate this,
it will be necessary to find a more complete reaction yield dataset.
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